Producing more grain with lower environmental costs
Journal Article

Agriculture faces great challenges to ensure global food security by increasing yields while reducing environmental costs. Here we address this challenge by conducting a total of 153 site-year field experiments covering the main agro-ecological areas for rice, wheat and maize production in China. A set of integrated soil–crop system management practices based on a modern understanding of crop ecophysiology and soil biogeochemistry increases average yields for rice, wheat and maize from 7.2 million grams per hectare (Mg ha−1), 7.2 Mg ha−1 and 10.5 Mg ha−1 to 8.5 Mg ha−1, 8.9 Mg ha−1and 14.2 Mg ha−1, respectively, without any increase in nitrogen fertilizer. Model simulation and life-cycle assessment3 show that reactive nitrogen losses and greenhouse gas emissions are reduced substantially by integrated soil–crop system management. If farmers in China could achieve average grain yields equivalent to 80% of this treatment by 2030, over the same planting area as in 2012, total production of rice, wheat and maize in China would be more than enough to meet the demand for direct human consumption and a substantially increased demand for animal feed, while decreasing the environmental costs of intensive agriculture.

Share This Publication