As the climate changes, where plants grow best is predicted to shift. Crops that once thrived as a staple in one region may no longer be plentiful enough to feed a community that formerly depended on it. Beyond where plants grow, there’s also the issue of how they grow. Evidence suggests that plants grown in the presence of high carbon dioxide levels aren’t as nutritious.

“Zinc is critical for the immune system and zinc deficiency makes pneumonia, diarrheal illness, malaria more difficult for the body to combat,” said Eran Bendavid, associate professor of medicine. “Iron deficiency has all sorts of manifestations, from lethargy and feeling ill to broader effects, like worse performance in school.”

David Lobell, professor of Earth system science in the School of Earth, Energy & Environmental Sciences, has been studying the relationship between climate change and crops. He was drawn to the relationship between C02 and crop nutrition because his work pairs findings from scientific models with concrete observations.

“Any time you’re looking at data, you need observations that correspond to the conditions you’re trying to understand. But you have to be creative to find data sets that allow for this kind of validation,” Lobell said.