A Global Model Tracking Water, Nitrogen, and Land Inputs and Virtual Transfers from Industrialized Meat Production and Trade
Journal Article

Rising populations and incomes throughout the world have boosted meat demand by over 75% in the last 20 years, intensifying pressures on production systems and the natural resources to which they are linked. As a growing proportion of global meat production is traded, the environmental impacts of production become increasingly separated from where the meat is consumed. In this paper, we quantify the use of three important resources associated with industrial livestock production and trade - water, land, and nitrogen - using a country-specific model that combines trade, agronomic, biogeochemical, and hydrological data. Our model focuses on pigs and chickens, as these animals are raised predominantly in intensive systems using concentrated, compound feeds. The results describe the geographical patterns of environmental resource use due to meat production, trade, and consumption. We show that US feed, animal, and meat destined for export require almost as much nitrogen and land, and 20% more water, than products destined for domestic consumption. Model results also demonstrate that among various production factors, improvements in crop yields and animal feed conversion efficiencies result in the most significant reductions in environmental harm. By explicitly tracking the externalities of meat production, we hope to bolster suppliers' accountability and provide better information to meat consumers.

Share This Publication