Global Congruence of Carbon Storage and Biodiversity in Terrestrial Ecosystems

Deforestation is a main driver of climate change and biodiversity loss. An incentive mechanism to reduce emissions from deforestation and forest degradation (REDD) is being negotiated under the United Nations Framework Convention on Climate Change. Here we use the best available global datasets on terrestrial biodiversity and carbon storage to map and investigate potential synergies between carbon and biodiversity-oriented conservation. A strong association (rS= 0.82) between carbon stocks and species richness suggests such synergies would be high, but unevenly distributed. Many areas of high value for biodiversity could be protected by carbon-based conservation, while others could benefit from complementary funding arising from their carbon content. Some high-biodiversity regions, however, would not benefit from carbon-focused conservation, and could become under increased pressure if REDD is implemented. Our results suggest that additional gains for biodiversity conservation are possible, without compromising the effectiveness for climate change mitigation, if REDD takes biodiversity distribution into account.