Biofuels

Providing food security for a world that will be warmer, more populous, and continually developing requires the implementation of sound policies that enhance food and agricultural consumption, production, incomes, and trade. FSE is in the midst of hosting a two-year, 12-lecture symposium series on Global Food Policy and Food Security.

Paragraphs

The ongoing expansion of oil palm plantations in the humid tropics, especially in Southeast Asia, is generating considerable concern and debate. Amid industry and environmental campaigners' claims, it can be hard to perceive reality. Is oil palm a valuable route to sustainable development or a costly road to environmental ruin? Inevitably, any answer depends on many choices. But do decision makers have the information they require to avoid pitfalls and make the best decisions? This review examines what we know and what we don't know about oil palm developments. Our sources include academic publications and ‘grey' literature, along with expert consultations. Some facts are indisputable: among these are that oil palm is highly productive and commercially profitable at large scales, and that palm oil demand is rising. Implementing oil palm developments involves many tradeoffs. Oil palm's considerable profitability offers wealth and development where wealth and development are needed-but also threatens traditional livelihoods. It offers a route out of poverty, while also making people vulnerable to exploitation, misinformation and market instabilities. It threatens rich biological diversity-while also offering the finance needed to protect forest. It offers a renewable source of fuel, but also threatens to increase global carbon emissions. We remain uncertain of the full implications of current choices. How can local, regional and international benefits be increased while costs are minimised? While much important information is available, it is often open to question or hard to generalise. We conclude this review with a list of pressing questions requiring further investigation. Credible, unbiased research on these issues will move the discussion and practice forward.

All Publications button
1
Publication Type
Working Papers
Publication Date
Journal Publisher
Center for International Forestry Research
Authors
Douglas Sheil
Anne Casson
Erik Meijaard
Meline van Noordwijk
Joanne Gaskell
Joanne Gaskell
Jacqui Sunderland-Groves
Karah Wertz
Markku Kanninen
Paragraphs

Recent work has shown that current bio-energy policy directives may have harmful, indirect consequences, affecting both food security and the global climate system. An additional unintended but direct effect of large-scale biofuel production is the impact on local and regional climate resulting from changes in the energy and moisture balance of the surface upon conversion to biofuel crops. Using the latest version of the WRF modeling system we conducted twenty-four, midsummer, continental-wide, sensitivity experiments by imposing realistic biophysical parameter limits appropriate for bio-energy crops in the Corn Belt of the United States. In the absence of strain/crop-specific parameterizations, a primary goal of this work was to isolate the maximum regional climate impact, for a trio of individual July months, due to land-use change resulting from bio-energy crops and to identify relative importance of each biophysical parameter in terms of its individual effect. Maximum, local changes in 2 m temperature of the order of 1C occur for the full breadth of albedo (ALB), minimum canopy resistance (RCMIN) and rooting depth (ROOT) specifications, while the regionally (105W-75W and 35N-50N) and monthly averaged response of 2 m temperature was most pronounced for the ALB and RCMIN experiments, exceeding 0.2C. The full range of the albedo variability associated with biofuel crops may be sufficient to drive regional changes in summertime rainfall. Individual parameter effects on 2 m temperature are additive, highlight the cooling contribution of higher leaf area index (LAI) and ROOT for perennial grasses (e.g., Miscanthus) versus annual crops (e.g., maize), and underscore the necessity of improving location- and vegetation-specific representation of RCMIN and ALB.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Geophysical Research Letters
Authors
Matei Georgescu
Matei Georgescu
David Lobell
David Lobell
Christopher B. Field
Christopher Field
News Type
News
Date
Paragraphs

Professor Walter P. Falcon, Deputy Director of the Center on Food Security and the Environment (FSE), former director of FSI, and Helen Farnsworth Professor of International Agricultural Policy, Emeritus has been recognized with an honorary degree from McGill University for his research aimed at reducing world hunger and enhancing global food security.

Professor Falcon's expertise is in food policy, commodity markets, trade policies, and regional development. Professor Falcon's current research focuses on agricultural decision-making in Indonesia and Mexico, biotechnology, climate change, and biofuels.

From 1972 to 1991, Professor Falcon served as professor of economics and director of Stanford University's Food Research Institute, after which he directed the Freeman Spogli Institute for International Studies until 1998. From 1998 to 2007 he co-directed the Center for Environmental Science and Policy. At Stanford he has also served as senior associate dean for the social sciences, a member of the academic senate, and twice a member of the University's Advisory Board.

Professor Falcon has also consulted with numerous international organizations, been a trustee of Winrock International, and was chairman of the board of the International Rice Research Institute (IRRI). From 1978 to 1980, he was a member of the Presidential Commission on World Hunger and in 1990 was named a Fellow of the American Agricultural Economics Association. From 1996-2001 he served as chairman of the board of the International Corn and Wheat Institute (CIMMYT), and from 2001-07 served on the board of the Center for International Forestry Research (CIFOR).

Falcon was cited as the outstanding 1958 graduate of Iowa State University in 1989 and in 1992 was awarded the prestigious Bintang Jasa Utama medal of merit by the government of Indonesia for twenty-five years of assistance to that country's development effort.

Hero Image
All News button
1
Authors
Carnegie Institution
News Type
News
Date
Paragraphs

[See video interview with Chris Field and David Lobell here].

Biofuels such as ethanol offer an alternative to petroleum for powering our cars, but growing energy crops to produce them can compete with food crops for farmland, and clearing forests to expand farmland will aggravate the climate change problem. How can we maximize our "miles per acre" from biomass?

Researchers writing in the May 7, 2009, edition of the journal Science say the best bet is to convert the biomass to electricity rather than ethanol. They calculate that, compared to ethanol used for internal combustion engines, bioelectricity used for battery-powered vehicles would deliver an average of 80 percent more miles of transportation per acre of crops, while also providing double the greenhouse gas offsets to mitigate climate change.
 
"It's a relatively obvious question once you ask it, but nobody had really asked it before," said study co-author Christopher B. Field, director of the Department of Global Ecology at the Carnegie Institution. "The kinds of motivations that have driven people to think about developing ethanol as a vehicle fuel have been somewhat different from those that have been motivating people to think about battery electric vehicles, but the overlap is in the area of maximizing efficiency and minimizing adverse impacts on climate."
 
Field, who is also a professor of biology at Stanford University and a senior fellow at Stanford's Woods Institute for the Environment, is part of a research team that includes lead author Elliott Campbell of the University of California-Merced and David Lobell of Stanford's Program on Food Security and the Environment.

Bioelectricity vs. ethanol

The researchers performed a life-cycle analysis of both bioelectricity and ethanol technologies, taking into account not only the energy produced by each technology, but also the energy consumed in producing the vehicles and fuels. For the analysis, they used publicly available data on vehicle efficiencies from the U.S. Environmental Protection Agency and other organizations.
 
Bioelectricity was the clear winner in the transportation-miles-per-acre comparison, regardless of whether the energy was produced from corn or from switchgrass, a cellulose-based energy crop. For example, a small SUV powered by bioelectricity could travel nearly 14,000 highway miles on the net energy produced from an acre of switchgrass, while a comparable internal combustion vehicle could only travel about 9,000 miles on the highway. (Average mileage for both city and highway driving would be 15,000 miles for a biolelectric SUV and 8,000 miles for an internal combustion vehicle.)
 
"The internal combustion engine just isn't very efficient, especially when compared to electric vehicles," said Campbell. "Even the best ethanol-producing technologies with hybrid vehicles aren't enough to overcome this."

Climate change 

The researchers found that bioelectricity and ethanol also differed in their potential impact on climate change. "Some approaches to bioenergy can make climate change worse, but other limited approaches can help fight climate change," said Campbell.  "For these beneficial approaches, we could do more to fight climate change by making electricity than making ethanol."
 
The energy from an acre of switchgrass used to power an electric vehicle would prevent or offset the release of up to 10 tons of CO2 per acre, relative to a similar-sized gasoline-powered car.  Across vehicle types and different crops, this offset averages more than 100 percent larger for the bioelectricity than for the ethanol pathway. Bioelectricity also offers more possibilities for reducing greenhouse gas emissions through measures such as carbon capture and sequestration, which could be implemented at biomass power stations but not individual internal combustion vehicles.
 
While the results of the study clearly favor bioelectricity over ethanol, the researchers caution that the issues facing society in choosing an energy strategy are complex. "We found that converting biomass to electricity rather than ethanol makes the most sense for two policy-relevant issues: transportation and climate," said Lobell. "But we also need to compare these options for other issues like water consumption, air pollution, and economic costs."
 
"There is a big strategic decision our country and others are making: whether to encourage development of vehicles that run on ethanol or electricity," said Campbell. "Studies like ours could be used to ensure that the alternative energy pathways we chose will provide the most transportation energy and the least climate change impacts."
 
This research was funded through a grant from the Stanford Global Climate and Energy Project, with additional support from the Stanford Program on Food Security and the Environment, UC-Merced, the Carnegie Institution for Science, and a NASA New Investigator Grant.

All News button
1

Energy and Environment Building
MC 4205
473 Via Ortega
Stanford CA 94305

0
Postdoctoral scholar
hollygibbs.jpg
PhD

Holly Gibbs is a David H. Smith Conservation Research Fellow in the Center on Food Security and Environment.  Her research focuses on quantifying the ripple effects of globalized economic drivers on tropical forest conservation and food security.  Dr. Gibbs develops statistical and GIS models to quantify and predict shifting drivers, patterns and consequences of tropical deforestation and agricultural expansion.  In particular, she is working to better integrate land use science and economics to quantify and map the indirect effects of U.S. biofuels and climate policies.  Much of this research aims to reconcile forest conservation, climate change and food security through improved policy and economic incentives.

She earned her Ph.D. from the University of Wisconsin-Madison in the Center for Sustainability and the Global Environment (SAGE) where a DOE Global Change Environmental Fellowship supported her studies.  Her dissertation research quantified shifting pathways of tropical land use and their implications for carbon emissions.  Throughout her Ph.D. she worked closely with policy makers, business leaders and environmental groups in support of the UNFCCC initiative to Reduce Emissions from Deforestation and Degradation (REDD).  Prior to moving to Madison, Dr. Gibbs worked as a Post-Masters Research Associate in Oak Ridge National Laboratory's Environmental Sciences Division where she led remote-sensing and GIS research for global carbon and water cycle projects.  She received a B.S. of Distinction in Natural Resources and M.S. in Environmental Science from The Ohio State University.

Paragraphs

Biofuels from land-rich tropical countries may help displace foreign petroleum imports for many industrialized nations, providing a possible solution to the twin challenges of energy security and climate change. But concern is mounting that crop-based biofuels will increase net greenhouse gas emissions if feedstocks are produced by expanding agricultural lands. Here we quantify the 'carbon payback time' for a range of biofuel crop expansion pathways in the tropics. We use a new, geographically detailed database of crop locations and yields, along with updated vegetation and soil biomass estimates, to provide carbon payback estimates that are more regionally specific than those in previous studies. Using this cropland database, we also estimate carbon payback times under different scenarios of future crop yields, biofuel technologies, and petroleum sources. Under current conditions, the expansion of biofuels into productive tropical ecosystems will always lead to net carbon emissions for decades to centuries, while expanding into degraded or already cultivated land will provide almost immediate carbon savings. Future crop yield improvements and technology advances, coupled with unconventional petroleum supplies, will increase biofuel carbon offsets, but clearing carbon-rich land still requires several decades or more for carbon payback. No foreseeable changes in agricultural or energy technology will be able to achieve meaningful carbon benefits if crop-based biofuels are produced at the expense of tropical forests.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Environmental Research Letters
Authors
Holly Gibbs
Holly Gibbs
et al
Paragraphs

Converting forest lands into bioenergy agriculture could accelerate climate change by emitting carbon stored in forests, while converting food agriculture lands into bioenergy agriculture could threaten food security. Both problems are potentially avoided by using abandoned agriculture lands for bioenergy agriculture. Here we show the global potential for bioenergy on abandoned agriculture lands to be less than 8% of current primary energy demand, based on historical land use data, satellite-derived land cover data, and global ecosystem modeling. The estimated global area of abandoned agriculture is 385-472 million hectares, or 66-110% of the areas reported in previous preliminary assessments. The area-weighted mean production of above-ground biomass is 4.3 tons/ha-1 /y-1, in contrast to estimates of up to 10 tons/ha/yr in previous assessments. The energy content of potential biomass grown on 100% of abandoned agriculture lands is less than 10% of primary energy demand for most nations in North America, Europe, and Asia, but it represents many times the energy demand in some African nations where grasslands are relatively productive and current energy demand is low.

» Article in the Stanford Report on Campbell et al. 
» Video by the Stanford News Service.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Environmental Science and Technology
Authors
J Elliott Campbell
David Lobell
David Lobell
Robert Genova
Christopher B. Field
Christopher Field
Subscribe to Biofuels