Paragraphs

The availability of climate model experiments under three alternative scenarios stabilizing at warming targets inspired by the COP21 agreements (a 1.5 ºC not exceed, a 1.5 ºC with overshoot and a 2.0ºC) makes it possible to assess future expected changes in global yields for two staple crops, wheat and maize. In this study an empirical model of the relation between crop yield anomalies and temperature and precipitation changes, with or without the inclusion of CO2 fertilization effects, is used to produce ensembles of time series of yield outcomes on a yearly basis over the course of the 21st century, for each scenario. The 21st century is divided into 10 year windows starting from 2020, within which the statistical significance and the magnitude of the differences in yield changes between pairs of scenarios are assessed, thus evaluating if, and when, benefits of mitigations appear, and how substantial they are. Additionally, a metric of extreme heat tailored to the individual crops (number of days during the growing season above a crop-specific threshold) is used to measure exposure to harmful temperatures under the different scenarios. If CO2 effects are not included, statistically significant differences in yields of both crops appear as early as the 2030s but the magnitude of the differences remains below 3% of the historical baseline in all cases until the second part of the century. In the later decades of the 21st century, differences remain small and eventually stop being statistically significant between the two scenarios stabilizing at 1.5 ºC, while differences between these two lower scenarios and the 2.0ºC scenario grow to about 4%. The inclusion of CO2 effects erases all significant benefits of mitigation for wheat, while the significance of differences is maintained for maize yields between the higher and the two lower scenarios, albeit with smaller benefits in magnitude. Changes in extremes are significant within each of the scenarios but the differences between any pair of them, even by the end of the century are only on the order of a few days per growing season, and these small changes appear limited to a few localized areas of the growing regions. These results seem to suggest that for globally averaged yields of these two grains the lower targets put forward by the Paris agreement does not change substantially the expected impacts on yields that are caused by warming temperatures under the pre-existing 2.0ºC target.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Environmental Research Letters
Authors
Claudia Tebaldi
David Lobell
Paragraphs

Ending world hunger is a universal goal, yet progress and social awareness of the issue waxes and wanes in the course of broader political and economic developments. The massive famine in China under Chairman Mao’s 1958–62 Great Leap Forward, a succession of severe droughts and associated famines in India in 1965–66, and the political violence that accompanied regime change in Indonesia in 1964–67 left tens of millions of people starving and drew global attention to the threat of food insecurity. What emerged from these events was an international commitment to agricultural technology transfers, water resource development, and foreign assistance – partly in the spirit of humanitarian goodwill and partly in pursuit of long-term geopolitical and economic interests revolving around the Cold War. Whatever the motivation, the outcome over the ensuing decades was more than a doubling of staple cereal yields in Asia, and a steady decline in real (inflation-adjusted) cereal prices.

Despite these gains, a second, quite different, rallying cry for food security resounded in 2007–8 as international grain prices spiked, food riots erupted in numerous cities throughout the developing world, and the global economy headed into a deep recession. Several factors sparked this crisis, but unlike the earlier periods of dire food shortages, the root causes included unwieldy financial markets and escalating demands for food, animal feeds, and fuel (including biofuels) in a globalized economy. This episode prompted new analyses of the connection between global commodity markets and food security, the political-economy foundations of agricultural development, and the differential impacts of food prices on net producers and net consumers. In the five-year period from 2007 to 2012, international cereal prices were highly unstable, varying by as much as 300 percent.

Today, international agricultural markets have settled at relatively low prices, but civil conflicts, extreme climate events, and other natural disasters are blocking the path toward ending hunger. In February 2017, the United Nations declared a famine in South Sudan, as war and economic collapse ravaged the newly independent nation. Although the famine officially ended in mid-2017, food emergencies and severe undernourishment still threaten tens of millions of people in South Sudan, Yemen, Nigeria, Somalia, and Syria, due to a combination of civil conflict, prolonged droughts, and occasional floods. On the surface, it seems incomprehensible that there could be such difficulty in addressing these looming famines at a time when global cereal production and stocks are at historical highs. But the problem is not a matter of food supply; the problem is war.

Download full article here.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Authors
Rosamond L. Naylor
Paragraphs

Globally, demand for food animal products is rising. At the same time, we face mounting, related pressures including limited natural resources, negative environmental externalities, climate disruption, and population growth. Governments and other stakeholders are seeking strategies to boost food production efficiency and food system resiliency, and aquaculture (farmed seafood) is commonly viewed as having a major role in improving global food security based on longstanding measures of animal production efficiency. The most widely used measurement is called the 'feed conversion ratio' (FCR), which is the weight of feed administered over the lifetime of an animal divided by weight gained. By this measure, fed aquaculture and chickens are similarly efficient at converting feed into animal biomass, and both are more efficient compared to pigs and cattle. FCR does not account for differences in feed content, edible portion of an animal, or nutritional quality of the final product. Given these limitations, we searched the literature for alternative efficiency measures and identified 'nutrient retention', which can be used to compare protein and calories in feed (inputs) and edible portions of animals (outputs). Protein and calorie retention have not been calculated for most aquaculture species. Focusing on commercial production, we collected data on feed composition, feed conversion ratios, edible portions (i.e. yield), and nutritional content of edible flesh for nine aquatic and three terrestrial farmed animal species. We estimate that 19% of protein and 10% of calories in feed for aquatic species are ultimately made available in the human food supply, with significant variation between species. Comparing all terrestrial and aquatic animals in the study, chickens are most efficient using these measures, followed by Atlantic salmon. Despite lower FCRs in aquaculture, protein and calorie retention for aquaculture production is comparable to livestock production. This is, in part, due to farmed fish and shrimp requiring higher levels of protein and calories in feed compared to chickens, pigs, and cattle. Strategies to address global food security should consider these alternative efficiency measures.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Environmental Research Letters, Volume 13, Number 2
Authors
Jillian Fry, Nicholas Mailloux, David Love, Michael Milli
Ling Cao
-

[[{"fid":"229629","view_mode":"crop_870xauto","fields":{"style":"height: 899px; width: 700px;","class":"media-element file-crop-epsa-crop-portret","data-delta":"1","format":"crop_870xauto","field_file_image_description[und][0][value]":"","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false,"field_credit[und][0][value]":"","field_caption[und][0][value]":"","thumbnails":"crop_870xauto","alt":"","title":""},"type":"media","field_deltas":{"1":{"style":"height: 899px; width: 700px;","class":"media-element file-crop-epsa-crop-portret","data-delta":"1","format":"crop_870xauto","field_file_image_description[und][0][value]":"","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false,"field_credit[und][0][value]":"","field_caption[und][0][value]":"","thumbnails":"crop_870xauto","alt":"","title":""}},"link_text":null,"attributes":{"style":"height: 899px; width: 700px;","class":"media-element file-crop-870xauto","data-delta":"1"}}]]

Seminars
Paragraphs

A critical question for agricultural production and food security is how water demand for staple crops will respond to climate and carbon dioxide (CO2) changes1, especially in light of the expected increases in extreme heat exposure2. To quantify the trade-offs between the effects of climate and CO2 on water demand, we use a ‘sink-strength’ model of demand3,4 which relies on the vapour-pressure deficit (VPD), incident radiation and the efficiencies of canopy-radiation use and canopy transpiration; the latter two are both dependent on CO2. This model is applied to a global data set of gridded monthly weather data over the cropping regions of maize, soybean, wheat and rice during the years 1948–2013. We find that this approach agrees well with Penman–Monteith potential evapotranspiration (PM) for the C3 crops of soybean, wheat and rice, where the competing CO2 effects largely cancel each other out, but that water demand in maize is significantly overstated by a demand measure that does not include CO2, such as the PM. We find the largest changes in wheat, for which water demand has increased since 1981 over 86% of the global cropping area and by 2.3–3.6 percentage points per decade in different regions.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Nature Climate Change
Authors
Daniel W. Urban, Justin Sheffield
David Lobell
Authors
News Type
News
Date
Paragraphs

Food security experts identify government support, policy implementation, private sector engagement and investment in smallholder farmers as keys to Africa’s agricultural future.

Food security experts from the Alliance for a Green Revolution in Africa (AGRA) gathered to discuss transforming food production in Africa at Stanford on Nov. 29. The symposium, hosted by the Center on Food Security and the Environment (FSE) examined the challenges, strategies, and possible solutions for catalyzing and sustaining an inclusive agriculture transformation in Africa. 

Moderator Ertharin Cousin, FSE visiting fellow and previous World Food Programme director with more than 25 years of experience on hunger, food, and resilience strategies, launched the panel by outlining Africa’s plight. “Today some 100 million of the farmers across Sub-Saharan Africa farm less than 2 hectares of land. Some 80 percent of those living in rural areas are poor. More than 30 percent of the rural population is chronically hungry and 35 percent of the under-five-year-olds are stunted. By 2050, the bulk of the world's population growth will take place on the continent. In fact, some project that 1.3 billion will be added to the continent, and Nigeria’s [population] will grow larger than the size of the United States between now and 2050,” Cousin said

.

While Africa continues to experience the highest occurrence of food insecurity worldwide, the continent also contains over 60 percent of the worlds uncultivated but fertile land. AGRA formed in 2006 to fulfill the vision that Africa can feed itself and the world. Panelists included Agnes Kalibata, AGRA President and former Minister of Agriculture and Animal Resources of Rwanda; Kanayo F. Nwanze, AGRA board member and immediate past president of the International Fund for Agricultural Development; Usha Barwale Zehr, AGRA board member and Director and Chief Technology Officer of Maharashtra Hybrid Seeds Company Private Limited; and Rajiv Shah, AGRA board member, Rockefeller Foundation President and former Administer of USAID.

Kanayo F. Nwanze stressed the importance of agricultural transformation for Africa’s future. “No country in the world ever transformed itself without going through an agrarian change. No country. Europe, 17th; Japan, 18th century; 19th century was the US, your country; China, 20th century. Why should they be different from Africa? So, first and foremost, we have to have total agricultural transformation,” Nwanze said.

AGRA president, Agnes Kalibata, also spoke to the need for policy implementation and government support in helping drive change. “AGRA as an institution can only do so much. But these governments have the potential and the capacity to reach every corner of their countries. The problem is they are challenged by capacity to do that, by capacity to design proper programs, and by capacity to implement these programs,” Kalibata said.

Expanding on governments' ability to impact and drive change, Usha Barwale Zehr highlighted Asia’s success, specifically with strategic partnerships. “…we've done a lot of talking about public/private partnership. Not so much on the ground on implementing it in a manner, which happened in Asia, for instance, where there was policy, and, most importantly, government will. The government was willing to do whatever it took to make sure that agriculture was transformed at the end of it,” Zehr said.

Beyond government and policy support the panelists also addressed the need for innovation and access to seed technologies. “Why is it that the African farmer and the Indian farmer should not have access to what the American farmer has access to today and reaps benefit from it? …So it's the hybrids, the varieties, the GM technology. Tomorrow it'll be the gene-edited products. And after that we will talk about the satellite-based imaging data that we will use for developing drought-tolerant crops for that very, very small micro environment that existed in the one district in Nigeria,” Zehr said.

"By 2050, who is going to feed Africa? … It's the youth of today. But they're not going to be using the same technologies that exist today. Just think of what IT can do, aggregation, organization of farmer's groups. So, the elements are there. I see the agriculture of tomorrow meeting the challenge – for Africa meeting that challenge is Africa being at the forefront of feeding the world. Africa has to be able to feed itself first. And we have all the opportunities there,” Nwanze said.

This is the first installment of the Global Food Security Symposium series hosted by Stanford University's Center on Food Security and the Environment and generously supported by Zach Nelson and Elizabeth Horn. FSE is a joint initiative of the Stanford Woods Institute for the Environment and the Freeman Spogli Institute for International Studies.

 

All News button
1
Authors
News Type
News
Date
Paragraphs

Stanford’s Center on Food Security and the Environment launches new symposium series focused on global food security with panel exploring Africa’s agricultural potential.

Food security experts from the Alliance for a Green Revolution in Africa (AGRA) will gather at Stanford for meetings and a symposium on transforming food production on that continent. R.S.V.P by Nov. 28 for Symposium: Can Africa rise to the challenge of feeding itself in the 21st century? | Nov. 29

Organized by the Center on Food Security and the Environment (FSE), the Nov. 29 symposium is the first in the center’s new Global Food Security Symposium series. Panel members include visiting AGRA board members, who will examine the challenges, strategies, and possible solutions for catalyzing and sustaining an inclusive agriculture transformation in Africa. This symposium marks the third series established by FSE convening thought leaders addressing global food security issues.

Afflicted by conflict, political upheaval, and extreme weather patterns Africa continues to experience the highest occurrence of food insecurity. However, with over 60 percent of the worlds uncultivated but fertile land, there is significant room for improvement. AGRA formed in 2006 to fulfill the vision that Africa can feed itself and the world. As an alliance led by Africans with roots in farming communities across the continent, they work to understand the unique needs of farmers and offer sustainable solutions designed to boost production.

In a region with 27.4 percent of the population currently experiencing food insecurity, creating a sustainable agricultural revolution remains a key solution to improving food security across the area. Moderated by Ertharin Cousin, previous World Food Programme director, with 25 years of experience on hunger, food, and resilience strategies, the panel will explore how an agricultural transformation in Africa can sustain a growing population, relieve hunger, generate jobs, improve social cohesion, and create global exports.

Panel members include:
Ertharin Cousin (moderator), Payne Distinguished Lecturer at the Freeman Spogli Institute for International Studies and Visiting Fellow at the Center on Food Security and the Environment, former US Ambassador to the UN Agencies for Food and Agriculture in Rome.


Agnes Kalibata, the President of AGRA and former Minister of Agriculture and Animal Resources of Rwanda.

Kanayo F. Nwanze, the immediate past president of the International Fund for Agricultural Development (IFAD), winner of the Africa Food Prize in 2016, AGRA board member.

Rajiv Shah, Rockefeller Foundation President, former Administer of USAID (2010-15) where he led bipartisan reform and expansion of US efforts combating global food insecurity. During his previous work at the Gates Foundation he helped launched AGRA.

Usha Barwale Zehr, Director and Chief Technology Officer at Maharashtra – one of India’s largest and most successful multinational seed companies – and AGRA board member.

This is the first installment of the Global Food Security Symposium series hosted by Stanford University's Center on Food Security and the Environment and generously supported by Zach Nelson and Elizabeth Horn. FSE is a joint initiative of the Stanford Woods Institute for the Environment and the Freeman Spogli Institute for International Studies.

All News button
1
Subscribe to Sub-Saharan Africa