Water-food-energy challenges in India: political economy of the sugar industry
Sugar is the second largest agro-based industry in India and has a major influence on the country's water, food, and energy security. In this paper, we use a nexus approach to assess India's interconnected water-food-energy challenges, with a specific focus on the political economy of the sugar industry in Maharashtra, one of the country's largest sugar producing states. Our work underscores three points. First, the governmental support of the sugar industry is likely to persist because policymakers are intricately tied to that industry. Entrenched political interests have continued policies that incentivize sugar production. As surplus sugar has been produced, the government introduced additional policies to reduce this excess and thereby protect the sugar industry. Second, although the sugar economy is important to India, sugar policies have had detrimental effects on both water and nutrition. Long-standing government support for sugarcane pricing and sales has expanded water-intensive sugarcane irrigation in low-rainfall areas in Maharashtra, which has reduced the state's freshwater resources and restricted irrigation of more nutritious crops. Despite its poor nutritional value, empty-calorie sugar has been subsidized through the public distribution system. Third, the Indian government is now promoting sugarcane-based ethanol production. This policy has the benefit of providing greater energy security and creating a new demand for surplus sugar in the Indian market. Our analysis shows that a national biofuel policy promoting the production of ethanol from sugarcane juice versus directly from molasses may help reduce subsidized sugar for human consumption without necessarily expanding water and land use for additional production of sugarcane.
On the role of anthropogenic climate change in the emerging food crisis in southern Africa in the 2019–2020 growing season
Researchers including David Lobell analyze how human-caused climate change has impacted a water deficit in Southern Africa and might contribute to a rising food security crisis in the region.
Flood Size Increases Nonlinearly Across the Western United States in Response to Lower Snow‐Precipitation Ratios
Many mountainous and high‐latitude regions have experienced more precipitation as rain rather than snow due to warmer winter temperatures. Further decreases in the annual snow fraction are projected under continued global warming, with potential impacts on flood risk. Here, we quantify the size of streamflow peaks in response to both seasonal and event‐specific rain‐fraction using stream gage observations from watersheds across the western United States. Across the study watersheds, the largest rainfall‐driven streamflow peaks are >2.5 times the size of the largest snowmelt‐driven peaks. Using a panel regression analysis of individual precipitation and snowmelt events, we show that the empirical streamflow response grows approximately exponentially as the liquid precipitation input increases, with rain‐dominated runoff leading to proportionately larger streamflow increases than snowmelt or mixed rain‐and‐snow runoff. We find that the response to changes in rain percentage is largest in the wettest watersheds, where wet antecedent conditions are important for increasing runoff efficiency. Similarly, the effect of rain percentage is larger across watersheds in the Northwest and West regions compared to watersheds in the Northern Rockies and Southwest regions. Overall, as a higher percentage of precipitation falls as rain, increases in the size of rainfall‐driven and “rain‐on‐snow”‐driven floods have the potential to more than offset decreases in the size of snowmelt‐driven floods.
The role of irrigation in changing wheat yields and heat sensitivity in India
Irrigation has been pivotal in wheat’s rise as a major crop in India and is likely to be increasingly important as an adaptation response to climate change. Here we use historical data across 40 years to quantify the contribution of irrigation to wheat yield increases and the extent to which irrigation reduces sensitivity to heat. We estimate that national yields in the 2000s are 13% higher than they would have been without irrigation trends since 1970. Moreover, irrigated wheat exhibits roughly one-quarter of the heat sensitivity estimated for fully rainfed conditions. However, yield gains from irrigation expansion have slowed in recent years and negative impacts of warming have continued to accrue despite lower heat sensitivity from the widespread expansion of irrigation. We conclude that as constraints on expanding irrigation become more binding, furthering yield gains in the face of additional warming is likely to present an increasingly difficult challenge.
Water Use Efficiency as a Constraint and Target for Improving the Resilience and Productivity of C3 and C4 Crops
The ratio of plant carbon gain to water use, known as water use efficiency (WUE), has long been recognized as a key constraint on crop production and an important target for crop improvement. WUE is a physiologically and genetically complex trait that can be defined at a range of scales. Many component traits directly influence WUE, including photosynthesis, stomatal and mesophyll conductances, and canopy structure. Interactions of carbon and water relations with diverse aspects of the environment and crop development also modulate WUE. As a consequence, enhancing WUE by breeding or biotechnology has proven challenging but not impossible. This review aims to synthesize new knowledge of WUE arising from advances in phenotyping, modeling, physiology, genetics, and molecular biology in the context of classical theoretical principles. In addition, we discuss how rising atmospheric CO2 concentration has created and will continue to create opportunities for enhancing WUE by modifying the trade-off between photosynthesis and transpiration.
The paradox of irrigation efficiency
Reconciling higher freshwater demands with finite freshwater resources remains one of the great policy dilemmas. Given that crop irrigation constitutes 70% of global water extractions, which contributes up to 40% of globally available calories (1), governments often support increases in irrigation efficiency (IE), promoting advanced technologies to improve the “crop per drop.” This provides private benefits to irrigators and is justified, in part, on the premise that increases in IE “save” water for reallocation to other sectors, including cities and the environment. Yet substantial scientific evidence (2) has long shown that increased IE rarely delivers the presumed public-good benefits of increased water availability. Decision-makers typically have not known or understood the importance of basin-scale water accounting or of the behavioral responses of irrigators to subsidies to increase IE. We show that to mitigate global water scarcity, increases in IE must be accompanied by robust water accounting and measurements, a cap on extractions, an assessment of uncertainties, the valuation of trade-offs, and a better understanding of the incentives and behavior of irrigators.
Quentin Grafton
R. Quentin Grafton, FASSA, is Professor of Economics, ANU Public Policy Fellow, Fellow of the Asia and the Pacific Policy Society and Director of the Centre for Water Economics, Environment and Policy (CWEEP) at the Crawford School of Public Policy at the Australian National University. In April 2010 he was appointed the Chairholder, the UNESCO Chair in Water Economics and Transboundary Water Governance and between August 2013 and July 2014 served as Executive Director at the Australian National Institute of Public Policy(ANIPP). He currently serves as the Director of the Food, Energy, Environment and Water Network.
Steven Gorelick
Braun Hall, Stanford University, Stanford, CA 94305
Professor Gorelick runs the Hydrogeology and Water Resources program and directs the interdisciplinary Global Freshwater Initiative. He is also a Senior Fellow at the Woods Institute for the Environment. Dr. Gorelick is a US National Academy of Engineering (NAE) member and received Fulbright and Guggenheim Fellowships for research on water and oil resources. He is a Fellow of the American Association for the Advancement of Science (AAAS), American Geophysical Union (AGU) and the Geological Society of America (GSA. Dr. Gorelick has produced over 140 journal papers and 3 books in the areas of water management in underdeveloped regions, hydrogeology, optimal remediation design, hydrogeophysics, ecohydrology, and global oil resources.