Agriculture policy
0
Affiliated scholar
img_1379.jpg

George Azzari joined FSE as a Postdoctoral Research Scholar in February 2015. He worked with David Lobell on designing, implementing, and applying new satellite-based monitoring techniques to study several aspects of food security. His current focuses include estimates of crop yields, crop classification, and detection of management practices in Africa, Asia, and the United States.  He is currently the Chief Technology Office at Atlas AI.

George's research uses a variety of satellite sensors from the private and public sector -including Landsat (NASA/USGS), Sentinel 1 and 2 (ESA), MODIS (NASA),  RapidEye (Planet), Planet Scope (Planet), and Skysat (Terrabella)- combined with crop modeling and machine learning techniques.  He received his Ph.D. from the University of California, Irvine, where he worked with Mike Goulden on monitoring post-fire succession of southern California ecosystems from remote sensing data. He examined the impact of topographic illumination effects on long time series of optical satellite data.
Authors
Leslie Willoughby
News Type
News
Date
Paragraphs

The European Union led the world in wheat production and exports in 2014-15. Yet Europe is also the region where productivity has slowed the most. Yields of major crops have not increased as much as would be expected over the past 20 years, based on past productivity increases and innovations in agriculture.

Finding the causes of that stagnation is key to understanding the trajectory of the global food supply.

Logically, it would seem that climate change would affect crops. But in the overall picture of agriculture, it's hard to figure out how much. European farming is a complex venture, and other possible stagnating factors include changes in government policy. For example, farm subsidies are no longer based on productivity and the use of fertilizer is now controlled to reduce runoff into water supplies. Ongoing positive factors include improvements in farm management practices and advances in crop genetics.

Historically, scientists relied on models to estimate the effects of climate change. Now Stanford's Frances C. Moore has for the first time statistically quantified the relative importance of climate in the stagnation of European crops. She found that warming and precipitation trends are affecting European grain harvests. Moore is a PhD candidate in the Emmett Interdisciplinary Program in Environment and Resources.

"This study is sobering in that it shows climate drags on some of the crops in this region," said David Lobell, co-author of the paper. "Yet this new approach to looking at the problem will help us understand more quickly what impacts require more attention, and that can only be positive in the long term." Lobell is an associate professor of environmental Earth system science and the deputy director of the Center on Food Security and the Environment at Stanford. He is also a senior fellow in the Freeman Spogli Institute for International Studies and the Stanford Woods Institute for the Environment. He studies ways to improve crop yields in major agricultural regions, with emphasis on adaptation to climate change.

"This is a major step in using quantitative analysis to disentangle the effect of climate change in a complicated system," said Dáithí Stone, a pioneer in comparing actual seasonal weather forecasts with what those forecasts would have been if human activities had not emitted greenhouse gases. "It demonstrates that the signal has become large enough that we may see the effect of climate change in a complicated system like agriculture." Stone is a research scientist in the Computational Chemistry, Materials and Climate Group of Berkeley Lab.

How wheat and corn and barley grow

Moore considered two factors in the study: actual crop yields and expected crop yields given historic temperature and precipitation trends. She applied statistical analyses to look for patterns in regional maps of actual European yields of wheat, maize (known in the United States as corn), barley and sugar beets, from 1989 to 2009.

The study found that climate trends can explain 10 percent of the slowdown in wheat and barley yields, with changes in government policy and agriculture likely responsible for the remainder of the stagnation. Moore found evidence that long-term temperature and precipitation trends since 1989 reduced overall European yields of wheat by 2.5 percent and barley by 3.8 percent, while slightly increasing maize and sugar beet yields.

Moore also wanted to find out to what extent farmers had adapted their practices to accommodate changing conditions. She applied power analysis, a statistical tool to test the effect of adaptation. But she discovered the test was not effective in the context of this study.

"We think farmers have been hurt already by warming and drying trends in Italy," Moore said. Undaunted by the limits of statistical analysis to measure farmer adaptation, she is planning another way to find out. "I have been doing this work in front of a computer – in the future I would like to go to Italy," she said. "It would be interesting to talk to the farmers."

Leslie Willoughby is an intern at Stanford News Service.

Media Contact

Frances C. Moore, Emmett Interdisciplinary Program in Environment and Resources: (617) 233-3380, fcmoore@stanford.edu

Dan Stober, Stanford News Service: (650) 721-6965, dstober@stanford.edu

Hero Image
All News button
1
Authors
News Type
News
Date
Paragraphs

In a lecture to the Stanford community Tuesday night, Professor Sir Gordon Conway argued that sustainably intensifying agriculture, especially in Africa, is the only way to feed a growing global population without greatly expanding the amount of land used for farming. Sir Gordon is an agricultural ecologist and was an early pioneer of sustainable agriculture while working in Malaysia in the 1960s. He is now a professor of international development at Imperial College London and the director of Agriculture for Impact, a project funded by the Bill and Melinda Gates Foundation.

Sir Gordon's lecture, "Can Sustainable Intensification Feed the World?" was the second installment of the Food and Nutrition Policy Symposium Series sponsored by the Center on Food Security and the Environment.

Sir Gordon described three major challenges to ensuring future global food security: food prices are higher and more volatile, one billion people are malnourished (including 1 in 5 children), and rising demand means that 60 to 100 percent more food will be needed to feed the world by 2050. Solving the food security crisis will mean improving both the quantity and the nutrition of food, at stable and affordable prices, in the face of major challenges.

These challenges include factors on the demand side of the global food economy, such as population growth, changing diets, and the use of crops for biofuels. Supply side factors like high fertilizer prices, climate change, and scarcity of land and water put even more pressure on the food system. 

The solution, Sir Gordon said, is agricultural intensification, a set of practices that allow farmers to produce more food with existing land and water. Sustainability is a key component, so that intensification does not also raise greenhouse gas emissions, deplete soil quality, or damage the resilience of farming systems. Sustainable intensification will be especially important in Africa, said Sir Gordon, where population growth and dietary changes will be most dramatic, and where currently crop yields are far below most other areas of the world.

 Farmers, scientists and policymakers can take several approaches to sustainable intensification. An ecological approach includes practices that safeguard environmental resources and reduce farmers’ dependence on chemicals like herbicides and pesticides, such as through organic farming, integrated pest management, agroforestry or conservation agriculture. A genetic intensification approach includes developing better plant varieties, with traits that promote more sustainable agriculture by resisting pests and diseases, or that provide more nutrition. A third approach is socio-economic intensification of agriculture, through the development of farmers’ cooperatives, better links between farmers and markets, and improved access by farmers to insurance and credit.

The goal, Sir Gordon said, is to help farmers “build resilient livelihoods” that will withstand economic and environmental shocks in the coming decades. Good science is important, but strong political leadership, especially within Africa, will be just as crucial.

Hero Image
All News button
1
Paragraphs

Over the last two decades global production of soybean and palm oil seeds have increased enormously. Because these tropically rainfed crops are used for food, cooking, animal feed, and biofuels, they have entered the agriculture, food, and energy chains of most nations despite their actual growth being increasingly concentrated in Southeast Asia and South America. The planting of these crops is controversial because they are sown on formerly forested lands, rely on large farmers and agribusiness rather than smallholders for their development, and supply export markets. The contrasts with the famed Green Revolution in rice and wheat of the 1960s through the 1980s are stark, as those irrigated crops were primarily grown by smallholders, depended upon public subsidies for cultivation, and served largely domestic sectors.  

The overall aim of the book is to provide a broad synthesis of the major supply and demand drivers of the rapid expansion of oil crops in the tropics; its economic, social, and environmental impacts; and the future outlook to 2050. After introducing the dramatic surge in oil crops, chapters provide a comparative perspective from different producing regions for two of the world's most important crops, oil palm and soybeans in the tropics. The following chapters examine the drivers of demand of vegetable oils for food, animal feed, and biodiesel and introduce the reader to price formation in vegetable oil markets and the role of trade in linking consumers across the world to distant producers in a handful of exporting countries. The remaining chapters review evidence on the economic, social, and environmental impacts of the oil crop revolution in the tropics. While both economic benefits and social and environmental costs have been huge, the outlook is for reduced trade-offs and more sustainable outcomes as the oil crop revolution slows and the global, national, and local communities converge on ways to better managed land use changes and land rights. 

Food, Feed, Fuel, and Forests
by Derek Byerlee, Walter P. Falcon, and Rosamond L. Naylor
will be published by Oxford University Press on November 10, 2016
$74.00 | 304 Pages | 9780190222987
All Publications button
1
Publication Type
Books
Publication Date
Journal Publisher
Oxford University Press
Authors
Walter P. Falcon
Rosamond L. Naylor
All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Nature Climate Change
Authors
S. Asseng
F. Ewert
P. Martre
R.P. Rotter
David Lobell
D. Cammarano
B.A. Kimball
M.J. Ottman
G.W. Wall
J.W. White
M.P. Reynolds
P.D. Alderman
P.V.V. Prasad
P.K. Aggarwal
J. Anothai
B. Basso
C. Biernath
A.J. Challinor
G. De Sanctis
J. Doltra
E. Fereres
M. Garcia-Vila
S. Gayler
G. Hoogenboom
L.A. Hunt
R.C. Izaurralde
M. Jabloun
C.D. Jones
K.C. Kersebaum
A-K. Koehler
C. Muller
S. Naresh Kuman
C. Nendel
G. O'Leary
J.E. Olesen
T. Palosuo
E. Priesack
E. Eyshi Rezaei
A.C. Ruane
M.A. Semenov
I. Shcherbak
C. Stockle
P. Stratonovitch
T. Streck
I. Supit
F. Tao
P.J. Thorburn
K. Waha
E. Wang
D. Wallach
J. Wolf
Z. Zhao
Y. Zhu
Authors
News Type
News
Date
Paragraphs

To predict how agriculture will be affected by future climate change, scientists often rely on a single crop model – a computer simulation of how a specific crop’s yield responds to temperature changes. By combining 30 such models into a single study, and comparing each model against data from existing experimental wheat fields around the world, a team of researchers including Stanford professor David Lobell have developed a more powerful and accurate way to predict future wheat yields.

In a new analysis published in Nature Climate Change, the team’s results support previous work suggesting that wheat yields around the world are sensitive to rising temperatures. Using the new method of analysis, the team estimates an average six percent future yield loss for every one degree Celsius rise in global mean temperature.

“Combining 30 models gives us a much greater ability to predict future impacts and understand past impacts,” said Lobell. “This is a clear step forward.”

Lobell is professor of environmental earth system science in the School of Earth Science at Stanford and the deputy director of the Center on Food Security and the Environment. He is a senior fellow at the Stanford Woods Institute for the Environment and at the Freeman Spogli Institute for International Studies.

The estimated six percent yield loss for every degree increase is equivalent to about a quarter of the current volume of wheat traded globally in 2013. Yields at some sites, notably those in Mexico, Brazil, India and Sudan, show simulated wheat yield losses of more than 20 percent - in Sudan’s case, more than 50 percent - under a scenario in which global mean temperature rises by two degrees Celsius.

With higher temperatures also comes an increase in the variability of wheat yields, both by location and between years. More fluctuation in wheat yields could mean greater global price volatility for the staple crop.

Approximately 70 percent of the wheat produced today is grown either on irrigated plots or in rainy regions. The research team accounted for this factor by focusing its simulations on multiple regional-specific varieties of wheat that are commonly grown under these conditions.

The new paper includes several suggestions for avoiding some of the predicted yield losses. For example, some varieties of wheat are more heat tolerant than others, and farmers in the places hardest hit by rising temperatures could switch varieties to capitalize on this heat resistance. The effects of rising temperatures could also be managed, in part, by adjusting sowing and harvesting dates, or changing the way fertilizers are applied to crops.

 

Contact: David Lobell, dlobell@stanford.edu

Hero Image
All News button
1
Paragraphs

Abstract: Many governments in developing countries distribute fertilizer at subsidized prices in an effort to stimulate small farmers' agricultural productivity and food security. Prior fertilizer demand studies have largely failed to account for the effects of government programs on farmers' commercial purchases. Using a double hurdle model and nationally representative rural household panel data in Zambia, we distinguish between these sources and measure the contemporaneous “crowding in” and “crowding out” effects of government input programs on commercial fertilizer sales. Where the private sector is relatively active and average wealth is higher (areas seemingly more likely to be targeted by government programs), results indicate that subsidies have substantially crowded out the private sector, in some cases to the point that such programs could actually lower overall fertilizer use. On the other hand, in poorer areas where the private sector is relatively inactive, subsidies help to generate demand and crowd in private sector retailers. Empirical studies explicitly modeling farmers' fertilizer purchase behavior within a dual marketing framework can provide important insights for agricultural policy discussions in developing countries.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Agricultural Economics
Authors
Zhiying Xu
Thomas S. Jayne
Jones Govereh
Number
1
Authors
News Type
News
Date
Paragraphs

In a recent speech, Stanford professor Rosamond Naylor examined the wide range of challenges contributing to global food insecurity, which Naylor defined as a lack of plentiful, nutritious and affordable food. Naylor's lecture, titled "Feeding the World in the 21st Century," was part of the quarterly Earth Matters series sponsored by Stanford Continuing Studies and the Stanford School of Earth Sciences. Naylor, a professor of Environmental Earth System Science and director of the Center on Food Security and the Environment at Stanford, is also a professor (by courtesy) of Economics, and the William Wrigley Senior Fellow at the Freeman Spogli Institute for International Studies and the Stanford Woods Institute for the Environment.

"One billion people go to bed day in and day out with chronic hunger," said Naylor. The problem of food insecurity, she explained, goes far beyond food supply. "We produce enough calories, just with cereal crops alone, to feed everyone on the planet," she said. Rather, food insecurity arises from a complex and interactive set of factors including poverty, malnutrition, disease, conflict, poor governance and volatile prices. Food supply depends on limited natural resources including water and energy, and food accessibility depends on government policies about land rights, biofuels, and food subsidies. Often, said Naylor, food policies in one country can impact food security in other parts of the world. Solutions to global hunger must account for this complexity, and for the "evolving" nature of food security.

As an example of this evolution, Naylor pointed to the success of China and India in reducing hunger rates from 70 percent to 15 percent within a single generation. Economic growth was key, as was the "Green Revolution," a series of advances in plant breeding, irrigation and agricultural technology that led to a doubling of global cereal crop production between 1970 and 2010. But Naylor warned that the success of the Green Revolution can lead to complacency about present-day food security challenges. China, for example, sharply reduced hunger as it underwent rapid economic growth, but now faces what Naylor described as a "second food security challenge" of micronutrient deficiency. Anemia, which is caused by a lack of dietary iron and which Naylor said is common in many rural areas of China, can permanently damage children's cognitive development and school performance, and eventually impede a country’s economic growth.

Hunger knows no boundaries

Although hunger is more prevalent in the developing world, food insecurity knows no geographic boundaries, said Naylor. Every country, including wealthy economies like the United States, struggles with problems of food availability, access, and nutrition. "Rather than think of this as 'their problem' that we don't need to deal with, really it's our problem too," Naylor said.

She pointed out that one in five children in the United States is chronically hungry, and 50 million Americans receive government food assistance. Many more millions go to soup kitchens every night, she added. "We are in a precarious position with our own food security, with big implications for public health and educational attainment," Naylor said. A major paradox of the United States' food security challenge is that hunger increasingly coexists with obesity. For the poorest Americans, cheap food offers abundant calories but low nutritional value. To improve the health and food security of millions of Americans, "linking policy in a way that can enhance the incomes of the poorest is really important, and it's the hard part,” she said.” It's not easy to fix the inequality issue."

Success stories

When asked whether there were any "easy" decisions that the global community can agree to, Naylor responded, "What we need to do for a lot of these issues is pretty clear, but how we get after it is not always agreed upon." She added, "But I think we've seen quite a few success stories," including the growing research on climate resilient crops, new scientific tools such as plant genetics, improved modeling techniques for water and irrigation systems, and better knowledge about how to use fertilizer more efficiently. She also said that the growing body of agriculture-focused climate research was encouraging, and that Stanford is a leader on this front.

Naylor is the editor and co-author of The Evolving Sphere of Food Security, a new book from Oxford University Press. The book features a team of 19 faculty authors from 5 Stanford schools including Earth science, economics, law, engineering, medicine, political science, international relations, and biology. The all-Stanford lineup was intentional, Naylor said, because the university is committed to interdisciplinary research that addresses complex global issues like food security, and because "agriculture is incredibly dominated by policy, and Stanford has a long history of dealing with some of these policy elements. This is the glue that enables us to answer really challenging questions." 

 

Hero Image
All News button
1
Subscribe to Agriculture policy