Innovation
Authors
Ashley Dean
News Type
News
Date
Paragraphs

February 10th marked the launch of the Program on Food Security and the Environment's Global Food Policy and Food Security Symposium Series. Setting the stage for the two-year series were Jeff Raikes, CEO of the Bill & Melinda Gates Foundation, and Greg Page, CEO and Chairman of Cargill Inc. As CEOs from the largest foundation and the largest agricultural firm in the world they provided important perspectives on global food security in these particularly volatile times. Full video and clips of the event are now available - Improving Food Security in the 21st Century: What are the Roles for Firms and Foundations.

Jeff Raikes: A Perspective from the Bill & Melinda Gates Foundation

Catalytic philanthropy

The Gates Foundation, through its Agricultural Development Initiative, has been a leader in addressing global food security issues. The Foundation allocates 25% of its resources to global development and to addressing the needs of the 1 billion people who live in extreme poverty ($1/day). 70-75% of those people live in rural areas and are dependent on subsistence agriculture for their livelihoods.

The Gates Foundation is driven by the principle: how can it invest its resources in ways that can leverage performance and address market failures? Its approach embodies a novel concept driven by both private sector motives and public responsibilities. Raikes describes this as catalytic philanthropy.

"The Foundation identifies where its investments can create an innovation, a new intervention that can really raise the quality of lives for people," said Raikes. "If successful, it can be scaled up and sustained by the private sector if we can show that there is a profit opportunity or the public sector if we can show that this is a better way to improve the overall quality of society through investment in public dollars."

Image

Photo credit: Michael Prince

In the realm of agriculture, allocating resources across the agricultural value chain has proven to be the most effective approach. As an example of this strategy, Raikes talked about a farmer-owned, Gates-supported dairy chilling plant in Kenya. The cooling facility provided the storage necessary to provide a predictable price at which to sell farmers' milk. This price knowledge and market access gave farmers the confidence to invest in better technology and better dairy cattle. The plant also provided artificial insemination services and extension services to teach farmers how to get greater amounts of milk from the cattle.

"I love the concept. I also love the numbers," said Raikes. "In just two or three years there were now 3,000 farmers in a 25 kilometer radius that were able to access this dairy chilling plant and able to sell their milk."

In addition to improving incomes, Raikes remarked that very consistently what he hears is when farmers are able to improve their incomes the first thing they do with the money is invest in the education of their children.

Upcoming challenges to food security

During the next 40 years or so, global food production must double to accommodate a growing and richer population. Climate change and water scarcity contribute to this challenge. The places that will suffer the most severe weather are also the places where the poorest farmers live. 95% of sub-Saharan agriculture is rain fed with very little irrigation.

"If we are going to be able to feed the world we are going to have to figure out how to achieve more crop per drop," cautioned Raikes. "This includes trying to breed crop varieties that will better withstand water shortages. Early results show that you can get as much as a 20% increase in yield or more under stressed conditions when you have varieties that are bred for that need."

These challenges are compounded by the current economic crisis that is putting pressure on budgets in both donor and developing countries. In 2009, the G20 committed 22 billion dollars to agricultural development in recognition of the importance of agricultural development to food security. However, of the 22 billion promised, 224 million dollars went to five countries in the first round of grants in June. By November, when 21 additional countries submitted their proposals, just 97 million dollars were available to be dispersed and 17 countries were turned away empty handed.

High- and low-tech solutions

In an effort to alleviate some of this deficit, the Gates Foundation has committed 300 million dollars in six grants that span the value chain. These include investments in science and technology, farm management practices, farmer productivity, and market access as well as the data and policy environment to support the Foundation's work. The grants are intended to support about 5 ½ million farm families in sub-Saharan Africa and South Asia.

"We believe innovative solutions can come from both high-tech and low-tech," said Raikes. "On the high-tech end, submergent genes are allowing rice crops to survive periods of flooding up to 15 days. In areas of rice farming prone to flooding, this can save entire crops traditionally wiped out by such weather disasters."

Image
Photo credit IRRI/Ariel Javellana

The sub1gene seeds are now being used by 400,000 farmers and are on track to be used by 20 million rice farmers by 2017. On the low-tech end, the Gates Foundation is providing $2 triple layer bags to farmers to reduce crop loss from pests; an affordable solution that has increased average income per farmer by $150/year.

"We primarily support conventional breeding, but we also support biotechnology breeding. In some cases we think that breeders in Africa and South Asia will want to take advantage of the modern tools we use here in our country to provide better choices for their farmers," explained Raikes.

Reasons for optimism

After years of diminished support, US Agricultural Development assistance to sub-Saharan Africa has gone from about 650 million in 2005 to about 1.5 billion in 2009. In developing countries, the Comprehensive Agricultural Development Program (CADP) in Africa has challenged countries to dedicate 10% of their national budgets to agriculture with the goal of improving annual agricultural growth by 6%. 20 countries have signed on to the CADP compacts, and 10 countries are exceeding the 6% growth target. Finally, since 1990, 1.3 billion people worldwide have lifted themselves out of poverty primarily through improvements in agricultural productivity.

Raikes pointed to Ghana as a success story. Since 1990, casaba production, an important staple food for poor smallholder farmers, has increased fivefold. Tomato production increased six fold. The cocoa sector has been revived and hunger has been cut by 75%.

"The key to success in Ghana was a combination of getting the right developing country policy with the right macroeconomic reform, the right institutional reform, smart public investment, and an overall good policy environment," said Raikes.

Supporting good policy is an important part of the Foundation's food security strategy, and was a strong motivation behind its funding of FSE's Global Food Policy and Food Security Symposium series.

"We see this symposium series as an opportunity to gather policy leaders who will bring new ideas of what will be effective policy approaches and effective economic environments in the countries we care a lot about, in particular sub-Saharan Africa and South Asia," said Raikes.

Raikes concluded his remarks by reminding everyone that the key to improving food security globally is making sure women, who make up at least 70% of the farm labor population, are included in the equation.

Greg Page: Balancing the race to caloric sufficiency with rural sociology

As the largest global agricultural firm, Cargill has an influential role to play in the world of food and agriculture. Cargill is a major supplier of food and crops and a provider of farmer services, inputs, and market access.

Image
Photo credit: Olaf Hammelburg

Together with the Gates Foundation, Cargill has reached out and trained 200,000 cocoa farmers in the Ivory Coast, Ghana, and Cameroon. One tribe and one small village at a time the company has helped improve food safety, quality maintenance, and storage; benefiting the farmers, Cargill, and customers further down the supply chain. Cargill has also assisted, through financing and product purchasing, 265,000 farmers in Benin, Burkina Faso, the Ivory Coast, Malawi, Uganda, Zambia, and Zimbabwe.

Can the world feed itself?

A billion people lack sufficient caloric intake on a daily basis. In sub-Saharan Africa, 38% of all children are chronically malnourished, largely the result of inadequate agricultural productivity. While nine of the ten countries that have the highest prevalence of malnourishment are in sub-Saharan Africa, the two countries with the largest absolute number of malnourished people are India and China.

"This points to the difficulty of this problem," said Page. "India exports corn and soybean protein and China has 2.5 trillion dollars of hard currency reserves. These issues aren't necessarily of ability to feed people, but a willingness and commitment to do so."

Can the world feed itself? Yes, said Page.

When you break down the number of calories needed per malnourished person per day and convert that to tons of whole grains required to extinguish that hunger you get 30 million tons; 1/6 the amount of grain we converted to fuel globally last year. In the U.S. alone, 40% of our corn goes to ethanol.

"It isn't an issue of caloric famine-it is an issue of economic famine," stated Page. "In other words, this is not a food supply problem, but rather the lack of purchasing power to pay for a diet. An adequate price must be assured to reward the farmer for his efforts and to provide enough money that she can do it again the following year."

Rural sociology premium

What we face is the need to keep smallholders on the farm-despite the fact that they may not be the low-cost producer of foodstuffs-in order to avoid a rural population migration that would be unsustainable. As a result, the challenge the world faces is who is going to pay that rural sociology premium? If it costs more to raise crops on small farms is that burden going to be borne by the urban poor or is there going to be an alternative funding mechanism that allows smallholders to succeed?

Image
Photo credit: Cargill

What is the survival price for a smallholder farmer? Page explained that if you wanted a family of four on a farm in sub-Saharan Africa to receive an income commensurate with the average per capita income of the urban population, you would come up with a price near $400 a ton.

"To put this in context, the highest price for maize that has ever been reached here in the United States is about $275 a ton," said Page. "This rural sociology premium to sustain smallholders is not an insignificant amount of money. How do we achieve fairness between the revenue received by the rural smallholder and the price borne by the urban consumer?"

State of disequilibrium - complacency to crisis

Today we are experiencing incredible price volatility where commodity prices are in a continuous state of disequilibrium. Very small changes in production have outsized impacts on price. This is in contrast to the last two and a half decades when the world operated with fairly robust stocks due to crop subsidies in the United States and Western Europe.

"This period of subsidization was when the western world probably did more harm to sub-Saharan Africa and South Asia than any other period in history," said Page. "We refused to allow price to signal to western farmers to produce less. As a result, the world price of grains fell far below the ability of any smallholder to compete. We then shipped those surpluses to developing countries, which then failed to invest in their agriculture for decades."

Today we are lurching from complacency to crisis. The ability of information and market speculation to be transmitted rapidly is affecting purchasing decisions of thousands to millions of consumers. Rising fuel prices, export restrictions, increasing demand for crops for biofuels, and unpredictable weather have all contributed to higher prices. Some of the drivers of price, however, are good things, such as the increase in per capita income and the capacity of more people to have a more dense and nutritious diet.

"Interestingly, the upside of the ethanol and biofuels program is that it brought prices back to a sufficiency that reinvigorated investment in agriculture," noted Page. "On one level I think a very good argument could be made that the biofuels program brought the world further from famine than it ever had been because of the price."

Critical food security factors

Page concluded by summarizing the elements that Cargill believes are critically important to increase food security. The first is the ability to understand the tradeoffs between a fast path to caloric sufficiency and the needs of rural sociology. Second, that crops be grown in the right soil, with the right technology, and relying on free trade so we can harvest competitive advantage to its fullest.

Another critical factor is rural property rights. Smallholders must have the ability to own the land, have access to it, and transfer it to future generations if you want a farmer to reinvest in his farm, said Page.

"Smallholders in developing countries need some degree of revenue certainty and access to a reliable market if we expect them to do what their countries really need them to do, which is raise productivity," explained Page. "Today they are often forced to sell at harvest, often below the cost of production, and lack the storage capabilities and capital to provide crops sufficiently and continuously."

Open, trust-based markets also play a key role in ensuring food security. Governments need to support trade. When Russia, Ukraine, and Argentina turned to embargos as a way to protect domestic food prices open markets were jeopardized and price volatility increased. Finally, there are very important roles for the world's governments in the creation of infrastructure that is vital to provide access to markets.

"I believe fully and completely in the world's capacity to harvest photosynthesis to feed every single person and to do it at prices that can be borne by all," concluded Page.

Hero Image
All News button
1
Authors
David Lobell
David Lobell
Mark Shwartz
News Type
News
Date
Paragraphs

The impact of global warming on food prices and hunger could be large over the next 20 years, according to a new Stanford University study. Researchers say that higher temperatures could significantly reduce yields of wheat, rice and maize - dietary staples for tens of millions of poor people who subsist on less than $1 a day. The resulting crop shortages would likely cause food prices to rise and drive many into poverty.  

But even as some people are hurt, others would be helped out of poverty, says Stanford agricultural scientist David Lobell.

Lobell discussed the results of his research on Feb 19 at the annual meeting of the American Association for the Advancement of Science in San Diego.

"Poverty impacts depend not only on food prices but also on the earnings of the poor," said Lobell, a center fellow at Stanford's Program on Food Security and the Environment (FSE). "Most projections assume that if prices go up, the amount of poverty in the world also will go up, because poor people spend a lot of their money on food. But poor people are pretty diverse. There are those who farm their own land and would actually benefit from higher crop prices, and there are rural wage laborers and people that live in cities who definiztely will be hurt."

Lobell and his colleagues recently conducted the first in-depth study showing how different climate scenarios could affect incomes of farmers and laborers in developing countries.

Household incomes

In the study, Lobell, former FSE researcher Marshall Burke and Purdue University agricultural economist Thomas Hertel focused on 15 developing countries in Asia, Africa and Latin America. Hertel has developed a global trade model that closely tracks the consumption and production of rice, wheat and maize on a country-by-country basis. The model was used to project the effects of climate change on agriculture within 20 years and the resulting impact on prices and poverty.

Using a range of global warming forecasts, the researchers were able to project three different crop-yield scenarios by 2030:

  • "Low-yield" - crop production is toward the low end of expectations.
  • "Most likely" - projected yields are consistent with expectations.
  • "High-yield" - production is higher than expected.

"One of the limitations of previous forecasts is that they don't consider the full range of uncertainties - that is, the chance that things could be better or worse than we expect," Lobell said. "We provided Tom those three scenarios of what climate change could mean for agricultural productivity. Then he used the trade model to project how each scenario would affect prices and poverty over the next 20 years.

"The impacts we're talking about are mainly driven by warmer temperatures, which dry up the soil, speed up crop development and shut down biological processes, like photosynthesis, that plants rely on," he added. "Plants in general don't like it hotter, and in many climate forecasts, the temperatures projected for 2030 would be outside the range that crops prefer."

Results

The study revealed a surprising mix of winners and losers depending on the projected global temperature. The "most likely" scenario projected by the International Panel on Climate Change is that global temperatures will rise 1.8 degrees Fahrenheit (1 degree Celsius) by 2030. In that scenario, the trade model projected relatively little change in crop yields, food prices and poverty rates

But under the "low-yield" scenario, in which temperatures increase by 2.7 F (1.5 C), the model projects a 10 to 20 percent drop in agricultural productivity, which results in a 10 to 60 percent rise in the price of rice, wheat and maize. Because of these higher prices, the overall poverty rate in the 15 countries surveyed was expected to rise by 3 percent.

However, an analysis of individual countries revealed a far more complicated picture. In 11 of the 15 countries, poor people who owned their own land and raised their own crops actually benefited from higher food prices, according to the model. In Thailand, for example, the poverty rate for people in the non-agricultural sector was projected to rise 5 percent, while the rate for self-employed farmers dropped more than 30 percent - in part because, as food supplies dwindled, the global demand for higher-priced crops increased.

"If prices go up and you're tied to international markets, you could be lifted out of poverty quite considerably," Lobell explained. "But there are a lot of countries, like Bangladesh, where poor people are either in urban areas or in rural areas but don't own their own land. Countries like that could be hurt quite a lot. Then there are semi-arid countries - like Zambia, Mozambique and Malawi - where even if prices go up and people own land, productivity will go down so much that it can't make up for those price increases. In the 'low-yield' scenario, those countries would see higher poverty rates across all sectors."

Under the "high-yield" scenario, in which global temperatures rise just 0.9 F (0.5 C), crop productivity increased. The resulting food surplus led to a 16 percent drop in prices, which could be detrimental to farm owners. In Thailand, the poverty rate among self-employed farmers was projected to rise 60 percent, while those in the non-agriculture sector saw a slight drop in poverty. In Zambia, Mozambique, Malawi and Uganda, poverty in the non-farming sector was projected to decline as much as 5 percent.

Risk management

Lobell said that, although the likelihood of the "low-yield" or "high-yield" scenario occurring is only 5 percent, it is important for policymakers to consider the full range of possibilities if they want to help countries adapt to climate change and ultimately prevent an increase in poverty and hunger. 

"It's like any sort of risk management or insurance program," he said. "You have to have some idea of the probability of events that have a big consequence. It's also important to keep in mind that any change, no matter how extreme, will benefit some households and hurt others."

The Program on Food Security and the Environment at Stanford is an interdisciplinary research and teaching program that generates policy solutions to the persistent problems of global hunger and environmental damage from agricultural practices worldwide. The program is jointly run by Stanford's Woods Institute for the Environment and the Freeman Spogli Institute for International Studies.

Hero Image
All News button
1
Authors
Rosamond L. Naylor
Rosamond L. Naylor
George H. Leonard
News Type
Commentary
Date
Paragraphs

While Americans' appetite for seafood continues to grow, most of us know little about where our fish comes from or how it was produced. In California, more than half of our seafood comes from aquaculture, often imported from fish farms in other countries. Just as most chickens, pigs and cows are raised in tightly confined, intensive operations, so too are many farm-raised fish.

But raising fish in tight quarters carries some serious risks. Disease and parasites can be transmitted from farmed to wild fish. Effluents, antibiotics and other chemicals can be discharged into surrounding waters. Nonnative farmed fish can escape into wild fish habitat. And a reliance on wild-caught fish in aquaculture feed can deplete food supplies for other marine life.

These environmental impacts have been evident in many other countries with intensive marine fish farming. In Chile, where industry expansion was prioritized over environmental protection, salmon aquaculture has collapsed, causing a major blow to what had been one of Chile's leading exports. Tens of thousands of people are now jobless in southern Chile, where the salmon farming industry once boomed.

If aquaculture is to play a responsible role in the future of seafood here at home, we must ensure that the "blue revolution" in ocean fish farming does not cause harm to the oceans and the marine life they support.

In December, Rep. Lois Capps (D-Santa Barbara) introduced in the House the National Sustainable Offshore Aquaculture Act, a bill that addresses the potential threats of poorly regulated fish farming in U.S. ocean waters. Her bill shares many of the features of a California state law, the Sustainable Oceans Act, which was written by state Sen. Joe Simitian (D-Palo Alto) and signed by Gov. Arnold Schwarzenegger in 2006. That legislation regulates fish farming in state waters, which extend three miles off the California coast. At present, all aquaculture operations in California and the U.S. are located just a few miles offshore.

If the U.S. and other states follow California's lead, we may be able to reward innovation and responsibility in aquaculture and at the same time prevent the kind of boom-and-bust development that happened in Chile. Unlike previous attempts to legislate fish farming at the national level, the Capps bill would ensure that U.S. aquaculture in federal waters, which extend from three to 200 miles offshore, establishes as a priority the protection of wild fish and functional ecosystems. It would ensure that industry expansion occurs only under the oversight of strong, performance-based environmental, socioeconomic and liability standards.

The bill also would preempt ecologically risky, piecemeal regulation of ocean fish farming in different regions of the U.S. Indeed, regulation efforts are already underway in many states, with no consistent standards to govern the industry's environmental or social performance. If these piecemeal regional initiatives move forward, it will get much more difficult to create a sustainable national policy for open-ocean aquaculture.

Previous federal bills introduced in 2005 and 2007 were fundamentally flawed -- and ultimately did not pass -- because they put the goal of aquaculture expansion far above that of environmental protection. Now, for the first time, a bill has been introduced that would demonstrably protect marine ecosystems, fishing communities and seafood consumers from the risks of poorly regulated open-ocean aquaculture.

The Obama administration is currently developing a national policy to guide the development of U.S. aquaculture. The administration would do well to embrace the vision articulated by Capps and Simitian for a science-based and precautionary approach to help ensure a responsible future for U.S. ocean fish farming.

Rosamond L. Naylor is director of the program on food security and the environment at Stanford University. George H. Leonard is director of the aquaculture program at the Ocean Conservancy in Santa Cruz.

Copyright The Los Angeles Times

All News button
1
Authors
Rosamond L. Naylor
Rosamond Naylor
Walter P. Falcon
Walter Falcon
News Type
Commentary
Date
Paragraphs

FSE director Rosamond L. Naylor and deputy director Walter P. Falcon discuss the food crisis in a lead article in the September/October 2008 issue of Boston Review.

During the eighteen months after January 2007, cereal prices doubled, setting off a world food crisis. In the United States, rising food prices have been a pocketbook annoyance. Most Americans can opt to buy lower-priced sources of calories and proteins and eat out less frequently. But for nearly half of the world’s population—the 2.5 billion people who live on less than $2 per day—rising costs mean fewer meals, smaller portions, stunted children, and higher infant mortality rates. The price explosion has produced, in short, a crisis of food security, defined by the Food and Agriculture Organization (FAO) as the physical and economic access to the food necessary for a healthy and productive life. And it has meant a sharp setback to decades-long efforts to reduce poverty in poor countries.

What we are witnessing is not a natural disaster—a silent tsunami or a perfect storm. . . . [The food crisis] is a man-made catastrophe, and as such must be fixed by people.
-Robert Zoellick, The World Bank (July 1, 2008)

The current situation is quite unlike the food crises of 1966 and 1973. It is not the result of a significant drop in food supply caused by bad weather, pests, or policy changes in the former Soviet Union. Rather, it is fundamentally a demand-driven story of “success.” Rising incomes, especially in China, India, Indonesia, and Brazil, have increased demand for diversified diets that include more meat and vegetable oils. Against this background of growing income and demand, increased global consumption of biofuels and the American and European quest for energy self-sufficiency have added further strains to the agricultural system. At the same time, neglected investments in productivity-improving agricultural technology—along with a weak U.S. dollar, excessive speculation, and misguided government policies in both developed and developing countries—have exacerbated the situation. Climate change also looms ominously over the entire global food system.

In short, an array of agricultural, economic, and political connections among commodities and across nations are now working together to the detriment of the world’s food-insecure people.

* * *

Cereals form the core of the global food system. In 2007 the world produced a record 2,100 million metric tons of grain. Most of these cereals were consumed in the countries in which they were produced. Some 260 million metric tons, or about 15 percent of production, were traded internationally. Food aid was about 6 million metric tons, about 0.3 percent of production. Although only 15 percent of production is traded in global markets, conditions in those markets have a large direct and indirect impact on cereal prices and demand in every country.

A world with oil at $125 per barrel, gasoline at $4 per gallon, and corn at $6 per bushel seemed unthinkable five years ago.

World grain production was exceptionally strong in 2007, and had actually grown in five of the eight years prior to 2007. Despite this success, demand exceeded supply in six of those years. This excess demand was met by drawing down global reserves. When, in 2007, the reserve-to-usage ratio dropped to a near-historic low, buyers and sellers reacted in ways that rapidly pushed up prices. Nonetheless, the current crisis of food security is not a result of some absolute shortage of basic staples. If all the cereals grown in 2007 had magically been spread equally among earth’s 6.6 billion persons and used directly as food, there would have been no crisis. Cereals alone could have supplied everyone with the required amounts of calories and proteins, with about 30 percent left over. (Children would have also needed some concentrated calories and proteins, because of the bulkiness of cereals and their inability to consume sufficient quantities of them.)

Of course, food is not distributed evenly across the globe. Average income levels as well as income inequalities vary by country and are major determinants of access to food. And because cereals and oilseeds can be used in multiple ways, not only for food, competition for these commodities spans many different firms and households. These pressures on supply and price are powerfully exemplified by the case of corn, whose price dramatically affects the broader structure of global food markets.

Corn is quintessentially American. It is the country’s largest crop in terms of area: in 2007, 94 million acres produced a record 330 million metric tons of grain. How is it possible that a record U.S. corn crop was centrally involved with the current high food prices? The answer lies mostly in corn’s versatility. It provides about half of the 18 million metric tons of sweeteners that Americans consume annually, much of it in the ninety-six gallons of beer and soda they drink per capita. Some 46 percent of the crop went to feed livestock to produce the 270 pounds of pork, poultry, and beef the average American consumed in 2007, and about 19 percent went for exports. Ethanol, which had taken only a tiny fraction of corn output a few years earlier, took a full 25 percent.

A world with oil at $125 per barrel, gasoline at $4 per gallon, and corn at $6 per bushel (fifty-six pounds) seemed unthinkable five years ago. A new constellation of market forces has drastically altered price levels and the correlations among them. In particular, the enormous growth in the use of corn for fuel now links corn and gasoline prices in profoundly important ways.

The current corn-petroleum price connections in the United States arguably can be traced to the 2005 environmental regulations to eliminate methyl tertiary butyl ether (MTBE) as a gasoline additive because of environmental and health risks. Corn-based ethanol has since become the preferred additive, offering the same octane ratings and beneficial properties as MTBE. Ethanol is typically used in the form of a 10/90 mixture with gasoline, and consumers pay for this ethanol as they fill their cars with fuel at the pump. As gas prices rise, so does the potential value of corn ethanol. Most of the ethanol now produced—some 6.5 billion gallons from the 139 plants in operation in 2007—was used as an oxygenate for the 142 billion gallons of fuel used by Americans last year.

China imported an incredible 34 million metric tons of soybeans for its pigs, poultry, and farmed-fish sectors and also its expanding urban population.

The sudden burst in demand explains the rapid increase in the portion of the corn crop being used for fuel. That demand might be expected to level off, as the market for additives will largely be supplied by 2009. But the United States is now poised on the brink of a second phase of ethanol use.

Ethanol can also be used in place of gasoline, even though it provides only about two-thirds the energy of gasoline on a volume basis. In other words, rational consumers would pay about 65 percent of the price of gasoline for their ethanol, since their cars would go about 65 percent as far on a tank of fuel. Because ethanol must be shipped and stored separately, only with substantial new infrastructure could ethanol be a large-scale choice for fuel. And cars would require so-called “flex” technology to use fuel containing high percentages of ethanol.

Whether more than 25 percent of the corn crop is used for fuel in the future is critically dependent on the price of oil and also on the politics of biofuels. The latter include mandatory minimum levels of ethanol production and the explicit and implicit subsidies contained in various pieces of agricultural and energy legislation. Senators McCain and Obama both expressed strong support for ethanol in the politically important Iowa caucuses.

The ethanol-production mandate for 2008 is 9 billion gallons. That number will grow to 15 billion gallons in 2015 and 36 billion (total renewables) in 2022. Rescinding these increased mandates would likely stabilize demand for corn-based ethanol. (High enough oil prices, coupled with low enough corn prices could, of course, make ethanol economical even at 65 percent of the efficiency of gasoline.) But if the higher mandates are indeed imposed, then an increasing portion of the U.S. corn crop will be fed to cars, rather than to animals or people. Consumers of corn tortillas in poor countries will find themselves increasingly in competition with S.U.V. owners in rich countries. At the margins that matter, corn prices would be linked to gasoline prices, and the entire price structure for cereals would adjust accordingly.

Image
food insecurity

 

In addition to mandates, current legislation also provides for credits (subsidy) of $0.51 per gallon to blenders and a $0.54 per gallon tax on imported ethanol plus a 2.5 percent additional duty on its value. Thus, in the United States, the economics of ethanol are fundamentally linked to specific legislative provisions. And what Congress has given, Congress can also take away.

Whether the mandates should be waived, the tariff on imported ethanol dropped, and the blender credits modified are all matters of intense debate. Corn farmers and investors in some 200 bio-refineries (on-line or under construction) are pushing for higher mandates; others believe that corn-based ethanol, however well-intended, is the wrong way to promote U.S. energy independence because of ethanol’s effect on food prices. The stakes are huge. The United States is by far the largest corn exporter in the world. Further reductions in exports resulting from greater ethanol use would greatly amplify price instability in corn and other global food markets.

Many technical experts have argued that corn is not the appropriatecommodity for use in biofuels. However, industrial-scale production from sources other than corn (and sugar) is as yet unproven. Although the chemistry for alternative feedstocks has been developed, credit-worthy business plans, including supply chains, have not. Proponents of other crops tend to overlook the extensive experience the corn industry has had with enzyme technologies that derive from its twenty-five-year history making corn sweeteners. As a consequence, and for better or worse, larger biofuel mandates mean a corn-dominated ethanol industry for at least the next five years, accompanied by the inevitable price pressures on food.

Very poor consumers in low-income countries rarely consume meat of any sort, and for them [cereal] cutbacks may be an encouraging sign: their best hope is more grain available on world markets.

An additional oil-corn connection is also important for farmers. The high oil prices that help drive the demand for biofuels also raise the energy costs of growing corn. Corn prices that have risen from less than $3 per bushel in 2005 to over $7 per bushel in 2008 have been a boon to farmers. Yet farmers (sometimes on their way to the bank!) are quick to point out that high oil prices are strongly and negatively affecting their businesses. Iowa State University maintains farm records that indicate the total cost for growing an acre of corn was $450 in 2005. By 2008, these costs had risen to more than $600 per acre. Seed and chemical costs have accelerated sharply and now constitute some 45 percent of total costs, including land-rental charges. Nonetheless, with rising yields and corn prices that have more than doubled, corn-based farm enterprises seem clearly better off in 2008 than in 2005.

Ethanol, then, is the beginning of the corn story, but far from the end of it. Corn’s other linkages to soybeans, wheat, and meat illustrate why it is the keystone in the food system. Midwestern farmers produced the record corn crop in 2007 in anticipation of high prices. But the focus on corn implied a series of acreage decisions that reverberated around the world. The more than 15-million-acre increase in corn planting came mainly at the expense of soybeans, which saw a decline of twelve million acres, or 16 percent of total soybean acreage. The United States consequently played a reduced role as a soybean exporter. Brazil, another major exporter, picked up some of the slack. Nonetheless the world’s production of soybeans declined in 2007 while three of the four largest countries in the world—China, India, and Indonesia—registered very strong economic growth. China imported an incredible 34 million metric tons of soybeans (45 percent of total world trade), which it used to produce soybean meal for some of its 600 million pigs and its large and rapidly growing poultry and farmed-fish sectors and also vegetable oil for its expanding urban population. In India and Indonesia, oilseed demand was driven less by livestock-feed requirements and much more by human demand for vegetable oils. India, for example, is one of the world’s largest users and importers of cooking oils.

The tightened supply of vegetable oils and the accelerated Asian demand for oilseed crops—soybeans, rapeseed, and palm oil—explain some of the price increases. For example, during the period July 2006 to June 2008, oil palm prices tripled. But as with corn, the use of oilseed crops in the production of fuel—about 7 percent of global vegetable oil production went to biodiesel—was another significant factor. Most of the latter was driven by biodiesel policies in Europe, using rapeseed (canola) as the main feedstock.

Prospects for lowered vegetable oil prices in the short run, like those for corn, are not obvious. U.S. farmers rebalanced their plantings in 2008, in part because of a late spring and in part because soybean prices had risen to $13 per bushel, making it again an economically attractive crop for farmers. Brazil continues to expand soybean acreage in several states as well, but, interestingly, the most likely sources of greatly increased vegetable oil supplies will come from Indonesia and Malaysia. Palm oil has long been among the cheapest sources of vegetable oil, and Indonesia has been planning a major expansion of area devoted to oil palm production. This expansion is complicated, however, by the potentially high environmental costs of clearing tropical forests, and because palm trees take up to three years before they yield economical harvests. Indonesia had originally planned the oil-palm expansion for biodiesel production for European and domestic fleets; however, the food value of vegetable oils has been so high that it does not pay to make biodiesel. So the expansion goes forward, but with food in mind more than fuel. As a consequence, supply/demand balances for oil palm may change appreciably in five years, although it is not at all clear that near-term supplies of vegetable oil can be accelerated very much.

In addition to fuel and oils, wheat prices, which went off the charts in 2008, are closely tied to the corn economy. Corn and wheat are both used by the animal-feed industry, and, in some years, one quarter of the wheat crop is fed directly to animals. As the cost of using corn for feed rose in 2007, producers of livestock products looked to other grains. Since the feed value of wheat is slightly higher than that of corn, it is not surprising that their prices initially moved in tandem as livestock producers moved among markets to find the cheapest rations for their animals.

The wheat market has several distinguishing features. For example, soft wheat is used primarily for pastries (and feed), whereas hard wheat is preferred for bread. In the United States, the market for hard-red spring wheat was especially volatile. Prices doubled between February 2007 and February 2008, although new supplies from this year’s harvest have begun to ease prices.

Wheat contributes less than 10 percent of the cost of a typical loaf of bread in the United States. Nevertheless, its sharp price increase triggered broad increases in the prices of baked goods to cover the rising costs of raw materials, packaging, and distribution. For poor consumers in developing countries who get many of their calories from wheat products, the rising prices of bread, wheat tortillas, chapatis, and naan had immediate and profound nutritional consequences.

Two other disruptive forces were at work on the wheat crop overseas. The continuing drought in Australia, a major wheat-exporting country, was one of the few instances of supply failure in 2007. Exports from Australia fell by half, and since Australia traditionally supplies about 15 percent of global wheat exports, the drop added to rising bread prices around the world.

Second, one of the most ominous issues for the longer-run is the outbreak of a new wheat rust, Ug99. As the name suggests, this rust was discovered in Uganda in 1999, and its spores then spread by wind into North Africa and the Middle East. The rust has serious consequences for wheat yields. While actual losses to date have been rather small, future losses could be immense. Virtually none of the world’s wheat varieties are resistant to the rust. Especially worrisome is its spread into South Asia where tens of millions of poor people depend directly on wheat for the bulk of their calories. The perception of a Ug99 threat has already had significant food-policy consequences in India (a point we return to later).

Finally, livestock products are part of this story about connections among commodities. In part, they help to push prices up. The growing pork sector in China, for example, exerted substantial upward pressures on world soybean markets. Most livestock producers in the United States and Europe, however, struggled to accommodate high-priced corn and other feeds. (One important exception took the form of distillers grains, a co-product of ethanol production. This residual is high in protein, and, if hauled in “wet” form directly from plants to dairies and feedlots, it provides cost advantages significant enough to transform feed rations, and potentially, to alter the geography of beef feedlots in the United States.)

In developed nations such as the United States, shrinking margins on livestock production are creating cutbacks. For example cattle have long gestation and maturation periods, and many cowherds are now being culled. Available meat on the market will increase in the short run, but a smaller supply of meat will eventually push prices up. Such price hikes will be felt mainly by middle- to upper-income households. Very poor consumers in low-income countries rarely consume meat of any sort, and for them the cutbacks may be an encouraging sign: their best hope is more grain available on world markets, rather than used as livestock feed or fuel in rich countries.

Governments that cannot provide their constituents food at affordable prices are often overthrown.

Much more could (and should) be said about individual commodities and about how recent macroeconomic trends have influenced the structures of markets. The expanded role of large hedge funds in commodity markets has increased price volatility for agricultural goods such as corn and wheat. For example, the number of corn contracts traded on the Chicago exchange has grown from 1 million in January 2002 to nearly 6 million in January 2008, leading some observers to conclude that there has been excessive financial speculation in these markets. The dollar has also depreciated rapidly during the past several years, virtually mirroring the rise in the price of oil. The dollar/euro price ratio is now only about 55 percent of what it was in 2000. If all commodity prices were quoted in euros, the price rises we have witnessed over the last two years would have been less steep. This obvious but important point underscores the central role that exchange rates play in both the world-food and oil economies.

* * *

The story thus far has focused on commodities and their market connections. But food is much more than an economic commodity. It is also a political commodity and the foundation for human survival. Governments that cannot provide their constituents food at affordable prices are often overthrown. And for those that remain in power during times of high prices, particularly in poor countries, the challenge of feeding a growing hungry population looms. Food riots, politics, and new policies have all been on the forefront of the current crisis. As of April 2008, eighteen countries had reported food riots, from Bangladesh to Egypt, Haiti to Mexico, Uzbekistan to Senegal. About the same number of countries, including India, Argentina, and Vietnam, erected trade barriers on food to protect their domestic constituents.

Governments have reacted to the crisis in different ways, and these policy responses can have far-reaching effects in the world food economy. India, in particular, played a pivotal role in shaping the current crisis when its national food authority placed restrictions on staple cereal exports in October 2007. Higher prices in the international wheat market, coupled with the escalating threat of Ug99 and poor weather conditions within India’s main cereal producing regions, triggered the new policy. Faced with less domestic wheat for public distribution and costly wheat imports, the government moved to guarantee supplies of its other main staple crop, rice, for its constituency. Bans were placed on exports of non-basmati varieties of rice, wheat, and wheat flour, and wheat imports were restricted for disease control. The move was geared in part to electoral politics—the upcoming 2009 elections—yet it had echoes, linking rice to the seemingly disconnected biofuels sector in the global commodity market.

Rice has historically carried great political weight in Asia. Unlike wheat and corn, which are much more freely traded in international markets, rice is consumed largely in countries where it is produced, and is exchanged to a great extent through government-to-government contracts. Although private sector investment and trade have expanded in recent decades, rice trade accounts for only 6 to 7 percent of total production, and Asian governments continue to keep a close eye on prices and availability for the sake of political stability.

Given India’s role as the world’s second largest rice exporter—in recent years supplying about five million metric tons or one-sixth of the world market—its export ban sent a shock to the system. The international rice price immediately jumped from about $300 to $400 per ton for standard grade rice and continued to soar to unprecedented levels as other countries reacted to the change. Shortly after India placed restrictions on rice exports, Vietnam, China, Cambodia, Indonesia, and Egypt followed suit. Meanwhile the Philippines—the world’s largest importer of rice—began to place open tenders in the world market (bids for imports at any price) in April 2008 in a desperate act to secure adequate stocks of rice for its citizens. At this point, the price of rice rose to $850 per ton, and soon surpassed $1,000 per ton in May with additional tenders. But still the Philippines struggled to secure sufficient rice at even this high price.

Other countries fared even worse. Bangladesh suffered a major tropical storm in November 2007 that killed 3,400 people, left millions homeless, and demolished large tracts of agricultural land. The country lacked the financial reserves needed to import rice, even though India made an exception to sell limited quantities of non-basmati rice at $650 per ton. Similarly, Sub-Saharan African countries, which import on average 40 percent of their rice consumption (in southern African countries the number is as high as 80 percent), had no access to their usual supplies of Indian rice, and could neither find nor afford other sources of rice in the market. Reduced cereal imports triggered price increases in regionally grown crops such as millet and sorghum. Although farmers who produce a surplus of those crops have benefited, the poorest households that consume more than they produce have had to go with less, and have no doubt suffered increased malnutrition.

 

Image
food aid

We are only beginning to understand the toll of price increases on the world’s least developed and low-income food-deficit countries, many of which are in Sub-Saharan Africa. The Food and Agriculture Organization estimates that the 2008 food-import bill for these countries will rise up to 40 percent above 2007 costs, after rising 30 and 37 percent, respectively, the previous two years. The cost of annual food imports for these regions is now four times what it was at the beginning of the decade, even though import volumes have declined. The World Bank predicts that with these rising costs, declining imports, and increasing domestic prices of agricultural commodities, millions of people will fall quickly into chronic hunger.

Cameroon has experienced some of the worst strife as a result of high consumer prices. Roughly 1,600 protesters were arrested and 200 were sentenced in the first few weeks after riots broke out in February 2008. In an attempt to extend his quarter-century run in office, President Paul Biya’s government not only clamped down on riots but also cut import duties and pledged to increase agricultural investments and public-sector wages.

In Argentina, a different form of food riot broke out against the newly elected President Cristina Fernandez de Kirchner when she raised export taxes on soybeans and implemented new taxes on wheat and other farm exports in order to hold domestic food prices down. Four months of nationwide protests by farm groups eventually persuaded the government to revoke these tax increases in mid-July, but political tension remains.

Governments thus walk a thin line between consumer- and producer-oriented incentives. Export restrictions in times of high world prices may help consumers, but they prevent agricultural producers from realizing economic gains. Interventions of this sort may help in the short-term, but they are extremely hard to retract. For example, many Asian countries implemented trade restrictions on rice in the mid-1970s in response to high prices, short supplies, and political unrest, and these policies remained in effect for over two decades. It is clear that policies designed to stabilize domestic prices often destabilize international ones. And advocating international cooperation as a solution is naïve, as evidenced by the repeated (and recent) failure of World Trade Organization negotiations over the topic of coordinated agricultural policies.

* * *

The international community is addressing the mounting crisis in different ways. The United Nations World Food Program (WFP) received $2.6 billion in contributions for the first six months of 2008—almost as much as it received for the full year in 2007, but still below the amount needed to feed the growing number of starving people worldwide. Food aid deliveries in 2007 fell to their lowest levels since 1961, and the outlook for 2008 remains sobering.

The United States has earmarked about $2 billion for food aid through its Public Law 480 program, more than any other country. However, only about 40 percent of this amount is spent on food; the rest goes to transportation and administration to meet Congressional mandates that U.S.-produced commodities committed as aid must be shipped to their destinations on U.S.-flagged vessels. With energy prices soaring, the cost of shipping food aid over long distances has increased by more than 50 percent during the past year, and the actual amount of food aid has decreased. An increasingly embarrassing cycle has evolved whereby U.S. food aid is reduced when costs are high and food is most needed by the poor (see U.S. Food Aid Shipments and Grain Prices, 1980-2007).

The food system is indeed global, yet the principal actors are national governments, not international agencies. The latter can help with solutions, but fundamental improvements require more enlightened national policies.

Canada and the European Union, meanwhile, have followed the WFP strategy by providing food aid in the form of cash to relief agencies in needy countries. The agencies then purchase supplies regionally, a practice that reduces transportation costs and boosts local agricultural markets. A proposal to endorse this strategy in the United States fell flat in the Congress and was countered in the Senate by a bill that would spend $60 million over four years to study the idea.

Food assistance, however, is a band-aid, not a cure, especially because it may provide major disincentives for agricultural development in poor regions. Ironically, the United States, the largest donor of food aid, is one of the smallest donors (relative to GDP) of international development aid. Agricultural development has been largely eliminated from the agenda of the U.S. Agency for International Development in recent decades and the agency has lost most of its agricultural expertise. (When polled, Americans believe that up to one-quarter of the U.S. federal budget is spent on foreign aid, when in fact the share is less than 1 percent. If voters had the numbers in better perspective, perhaps they would push for an increase in assistance.)

Over the longer run, only sustained growth in agricultural productivity can reduce the vulnerability of all countries to the chaos created by food crises. This conclusion is especially true for poor countries where over half of the workforce derive their principal income from agriculture, and the farm sector accounts for a sizeable share of GDP. But even rich countries such as the United States require continued investments in agricultural productivity—a point made clear by the fact that a large share of the corn crop now goes to fuel American gas tanks. Unfortunately, growth in public-sector investments in agricultural productivity research has slowed in many countries, rich and poor, although China, India, and Brazil have been clear exceptions. Private-sector agricultural investments have been more robust but have been focused mainly in rich countries and have resulted in the proliferation of biotechnology patents that have kept innovation largely out of public hands. The gap between the “haves” and “have-nots” of agricultural research is thus widening.

This pattern of agricultural investments is a key culprit in the current crisis, and it will continue to create serious problems for consumers worldwide if crop-based biofuel use expands further. Globally, agricultural productivity growth (2 percent per year from 1980-2004) is barely outpacing population growth (1.6 percent per annum). And even this minimal progress has not been evenly spread. Asia, and in particular China, has dominated the positive trend, while Sub-Saharan Africa has faltered with its grain yield at one-quarter that of East Asia’s 1.6 tons per acre. (The industrialized world produced 2.4 tons per acre in 2004). Fortunately, bilateral donors are now taking an increasing interest in Sub-Saharan Africa, as are several important private foundations (a point discussed more thoroughly in the May / June 2008 issue of Boston Review).

The World Bank is in a position to reinvigorate agricultural development, both financially and symbolically. What is it currently doing to help? Fortunately, Robert Zoellick is providing international leadership on global agriculture that has long been overdue at the Bank. Allocations for agricultural development are now up; for example, the Bank has pledged to double agricultural lending in Africa from $400 million to $800 million in 2009. Yet the steady decline in the Bank’s investments in agricultural research and development, cuts in its technical staff on agricultural development, and reductions in overall allocations to agriculture (from about 25 percent of total Bank lending in the mid-1980s to 10 percent in 2000) have done little to bolster infrastructure and agricultural capacity in the countries worst hit by the crisis. The non-trivial issues of corruption and poor governance in several African countries are partially to blame for this decline: Bank leaders have argued for funding cuts on the grounds that money given directly to governments for agricultural development never reaches targeted projects. But the Bank’s leadership (prior to Paul Wolfowitz and now Zoellick) also lacked vision regarding the importance of agricultural development. The World Bank does not stand alone in this neglect; for example, the Asian Development Bank recently decided to omit agriculture from its lending portfolio. It is time for the international community of aid institutions and national governments to change direction on this issue.

* * *

It is one thing to commit to the new forms of food aid and additional investments in crop productivity needed to work through the current food crisis. It is quite another to plan for what will be needed to keep the world out of a perpetual food crisis in the face of global climate change. With increasing temperatures, rising sea levels, changing precipitation patterns, new pest and pathogen pressures, and reduced soil moisture in many regions, the impact on the agricultural sector is likely to be especially severe. How can the international community grapple with the present challenges in the world food economy and still keep agricultural productivity ahead of a changing climate?

Predicting climate conditions decades in advance involves many uncertainties. Nonetheless, some twenty global climate models (also known as general circulation models) considered by the Intergovernmental Panel on Climate Change broadly agree on three points. First, all regions will become warmer. The marginal change in temperature will be greater at higher latitudes, although tropical regions are likely to be more sensitive to projected temperature changes because they have experienced less variation in the past. Second, soil moisture is expected to decline with higher temperatures and increased rates of evapotranspiration in many sub-tropical areas. These factors will lead to sustained drought conditions in some areas and flooding in others where rainfall intensity increases but soil moisture decreases. And third, sea levels will rise globally with thermal expansion of the oceans and glacial melt, with especially devastating consequences for small island states and for low-lying and highly populated regions.

Large areas of Bangladesh already flood on an annual basis and are likely to be submerged completely in the future. Moreover, the rapid melting of the Himalayan glaciers, which regulate the perennial flow in large rivers such as the Indus, Ganges, Brahmaputra, and Mekong, is expected to cause these river systems to experience shorter and more intense seasonal flow and more flooding, thus affecting large tracts of agricultural land.

Increased temperature and drought will pose large risks to food insecure populations, particularly in Sub-Saharan Africa and South Asia. Research at the University of Washington and Stanford University predicts that average growing season temperatures throughout the tropics and sub-tropics will rise above the bounds of historical extremes by the end of the century. Yield losses are expected be as high as 30-50 percent for corn in southern Africa if major adaptation measures are not pursued. Africa as a whole is particularly vulnerable to climate change since over half of the economic activity in most of the continent’s poorest countries is derived from agriculture, and over 90 percent of the farming is on rain-fed lands.

Given the inevitable changes in climate over the coming decades, what forms of adaptation are needed, and how can the international community help?

One strategy is based on developing new crop varieties resistant to climate-induced stresses (heat, drought, new pests and pathogens). Introducing these climate-tolerant traits in crops will require continued collection, evaluation, deployment, and conservation of diverse crop genetic material, because the diversity of genetic resources is the building block for crop breeding. In the absence of such efforts, even temperate agricultural systems will suffer yield losses with large increases in seasonal temperature.

Misguided domestic policies [in the U.S. and abroad] are also driving the crisis.

Additional adaptation strategies include investments in irrigation and transportation infrastructure and the design of climate information and insurance networks for farmers. The creation of non-farm employment will also help reduce climate change impacts in cases like the Sahel (the northern section of Africa below the Sahara desert and above the tropical zone) where agriculture may simply be unviable in the future.

All of these strategies involve large-scale investments in “public goods” that the private sector cannot be expected to fill. The U.S. government, for one, needs to recognize the global consequences of climate change and contribute to such public investments. Other governing bodies (e.g., those of Canada, the European Union, and East Asian countries) and international development organizations also need to play a greater role. Promoting pro-poor investments in agricultural productivity research and implementation—not allowing such investments to fall off the agenda—is the key to food security in the face of climate change. The future will look very much like a continuation of the current crisis—or indeed much worse—without such investments.

* * *

The complexity of the food crisis across commodities, space, and time makes it difficult to give a precise statement of causes. That said, the direct and indirect effects of increased ethanol production in response to rising oil prices seem to have pushed an already tight food system (with weak investment in innovation) over the edge. The U.S. Department of Agriculture’s assessment that biofuels were 3 percent of the problem completely lacks credibility, and the International Food Policy Research Center’s estimate of 30 percent may also be too low. What happens to future corn and vegetable oil prices, and therefore to the entire structure of food prices, is dependent primarily on the price of oil and on whether the new biofuel mandates for ethanol in the United States and biodiesel in Europe are imposed or rescinded.

The price of oil, in particular, is a fundamental factor in the overall equation. In a world of $50-per-barrel oil, growth in biofuels would have been more limited, with a much smaller spillover onto food prices. But the links that have emerged between agricultural and energy sectors will shape future investments and the well-being of farmers and consumers worldwide.

Misguided domestic policies serving particular groups of constituents in a wide range of countries are also driving the crisis. Export bans on food in response to populist pressures are likely to yield small and short-lived gains, while producing large and long-term damage to low-income consumers in other countries. The food system is indeed global, yet the principal actors are national governments, not international agencies. The latter can help with solutions, but fundamental improvements require more enlightened national policies.

As Zoellick’s passage at the beginning of this essay implies, much of the current crisis could have been avoided and can be fixed over time. Individuals, national governments, and international institutions took agriculture for granted for twenty years, and their neglect has now caught up with the world. Fortunately, high food prices and the resulting political upheaval have induced national governments and such international institutions as the World Bank to pledge greater investments in agricultural development. Unfortunately, these pledges only came as a response to widespread malnutrition among the world’s poorest households.

In response to rising demand and higher prices, some new sources of supply are emerging, including soybean expansion in Brazil and oil palm expansion in Indonesia. However, the environmental impacts of such expansion, particularly when it involves clearing tropical rainforests, are potentially serious. Similarly, efforts to increase crop yields in existing agricultural areas are leading to greater fertilizer inputs and losses to the surrounding environment. The trade-offs between agricultural productivity and environmental sustainability, particularly in an era of climate change, appear to be more extreme than ever before.

The current food crisis has different origins than previous global food crises, and will require different solutions. It also differs from famines in isolated geographic areas for which food aid and other palliatives can provide quick fixes. The present situation is instead reflected in higher infant mortality and poverty rates over a much wider geography. Given the underlying pressures of growing population, increasing global incomes, and the search for oil substitutes, leaders in both the public and private sectors in developed and developing nations need to be serious about expanded agricultural investments and improved food policies. Otherwise, the current situation will only get worse, especially for the 40 percent of the world’s population that is already living so close to the edge.

Hero Image
All News button
1
Authors
Joshua Cohen
News Type
News
Date
Paragraphs

One of Stanford's many remarkable attractions is the Rodin sculpture garden. And perhaps the most extraordinary Rodin sculpture is his Gates of Hell, inspired by Dante’s “Inferno.” In his Divine Comedy, Dante tells us that the inscription over the Gates of Hell is “abandon all hope, ye who enter here.”

For hundreds of millions of people, that sad admonition belongs over their workplace. Abandon all hope … and not only your hope. Abandon your health and your right to associate; and don’t expect to be paid much.

That problem — the terrible unfairness of so many people having to sacrifice so much simply to make a living — provides the focus for the Just Supply Chains project of the Program on Global Justice (PGJ). Because of resistance to such working conditions, and pressure from movements against sweatshops, many companies have adopted codes of conduct for themselves and their suppliers over the past decade. But studies of these “private voluntary codes” have generated considerable skepticism about their effectiveness in improving compensation, working conditions, and rights of association. The aim of the project is to explore how codes and monitoring for compliance might be improved and also to consider some alternatives to private voluntary codes for regulating global labor markets.

PGJ has held two meetings, with participation from academics (from Stanford and elsewhere), NGOs (Fair Labor Association, Ethical Trading Initiative, Workers Rights Consortium), companies (Ford, Nike, Gap, Coca-Cola, Apple, HP, and Costco), and unions (including the International Textile, Garment and Leather Workers’ Federation). Through wide-ranging discussions, participants identified a set of research topics: whether consumers are willing to pay more for goods produced under decent conditions, whether there is a “business case” for improved labor standards, what the effects on labor standards will be of current reorganizations of supply chains in response to growing transportation costs, and how national labor-inspection systems might work better under conditions of globalized production. The next step is to establish working groups, combining academics and practitioners, to refine these topics and start to answer open questions about how to promote more decent working conditions in global supply chains.

In addition to the Just Supply Chains project, PGJ has been working to launch some other interdisciplinary, policy-oriented research initiatives. Along with colleagues in the School of Earth Sciences, the Interdisciplinary Program on Environment and Resources, FSI’s Center on Food Security and the Environment (FSE), the Ethics Center, and the Woods Institute, PGJ is a partner in an NSF proposal aimed at establishing a training program for graduate students in social sciences and climate science on the differential vulnerability of human-environment systems to climate change, the ethical implications of such differential vulnerability, and the role of institutions in shaping the adaptive capacity of communities.

PGJ is also working on a project on Liberation Technology, bringing together social scientists with researchers in applied technology interested in economically, socially, and politically constructive uses of new information technologies (to enable producers to learn more about markets, citizens to monitor elections and hold officials accountable, and public service providers to identify where those services are most needed). Finally, the Program on Global Justice is launching a Human Rights project, with support from the Presidential Fund for Innovation in International Studies, for historical and comparative research on the roles of political mobilization and legal protections in securing human rights.

All News button
1
Authors
Ashley Dean
News Type
News
Date
Paragraphs

This past autumn, the Freeman Spogli Institute ( FSI ) in conjunction with the Woods Institute for the Environment launched a program on Food Security and the Environment (FSE) to address the deficit in academia and, on a larger scale, the global dialogue surrounding the critical issues of food security, poverty, and environmental degradation.

“Hunger is the silent killer and moral outrage of our time; however, there are few university programs in the United States designed to study and solve the problem of global food insecurity,” states program director Rosamond L. Naylor. “FSE’s dual affiliation with FSI and Stanford’s new Woods Institute for the Environment position it well to make significant steps in this area.”

Through a focused research portfolio and an interdisciplinary team of scholars led by Naylor and Center for Environmental Science and Policy (CESP) co-director Walter P. Falcon, FSE aims to design new approaches to solve these persistent problems, expand higher education on food security and the environment at Stanford, and provide direct policy outreach.

Productive food systems and their environmental consequences form the core of the program. Fundamentally, the FSE program seeks to understand the food security issues that are of paramount interest to poor countries, the food diversification challenges that are a focus of middle-income nations, and the food safety and subsidy concerns prominent in richer nations.

CHRONIC HUNGER IN A TIME OF PROSPERITY

Although the world’s supply of basic foods has doubled over the past century, roughly 850 million people (12 percent of the world’s population) suffer from chronic hunger. Food insecurity deaths during the past 20 years outnumber war deaths by a factor of at least 5 to 1. Food insecurity is particularly widespread in agricultural regions where resource scarcity and environmental degradation constrain productivity and income growth.

FSE is currently assessing the impacts of climate variability on food security in Asian rice economies. This ongoing project combines the expertise of atmospheric scientists, agricultural economists, and policy analysts to understand and mitigate the adverse effects of El Niño-related climate variability on rice production and food security. As a consequence of Falcon and Naylor’s long-standing roles as policy advisors in Indonesia, models developed through this project have already been embedded into analytical units within Indonesia’s Ministries of Agriculture, Planning, and Finance. “With such forecasts in hand, the relevant government agencies are much better equipped to mitigate the negative consequences of El Niño events on incomes and food security in the Indonesian countryside,” explain Falcon and Naylor.

FOOD DIVERSIFICATION AND INTENSIFICATION

With rapid income growth, urbanization, and population growth in developing economies, priorities shift from food security to the diversification of agricultural production and consumption. “Meat production is projected to double by 2020,” states Harold Mooney, CESP senior fellow and an author of the Millennium Ecosystem Assessment. As a result, land once used to provide grains for humans now provides feed for hogs and poultry.

These trends will have major consequences for the global environment—affecting the quality of the atmosphere, water, and soil due to nutrient overloads; impacting marine fisheries both locally and globally through fish meal use; and threatening human health, as, for example, through excessive use of antibiotics.

An FSE project is analyzing the impact of intensive livestock production and assessing the environmental effects to gain a better understanding of the true costs of this resource-intensive system. A product of this work recently appeared as a Policy Forum piece in the December 9, 2005, issue of Science titled "Losing the Links Between Livestock and Land."

Factors contributing to the global growth of livestock systems, lead author Naylor notes, are declining feed-grain prices, relatively inexpensive transportation costs, and trade liberalization. “But many of the true costs remain largely unaccounted for,” she says, including destruction of forests and grasslands to provide farmland for feed crops destined not for humans but for livestock; utilization of large quantities of freshwater; and nitrogen losses from croplands and animal manure.

Naylor and her research team are seeking better ways to track all costs of livestock production, especially hidden costs of ecosystem degradation and destruction. “What is needed is a re-coupling of crop and livestock systems,” Naylor says, “if not physically, then through pricing and other policy mechanisms that reflect social costs of resource use and ecological abuse.” Such policies “should not significantly compromise the improving diets of developing countries, nor should they prohibit trade,” Naylor adds. Instead, they should “focus on regulatory and incentive-based tools to encourage livestock and feed producers to internalize pollution costs, minimize nutrient run-off, and pay the true price of water.”

LOOKING AHEAD

The future of the program on Food Security and the Environment looks bright and expansive. Building on existing research at Stanford, researchers are identifying avenues in the world’s least developed countries to enhance orphan crop production— crops with little international trade and investment, but high local value for food and nutrition security. This work seeks to identify advanced genetic and genomic strategies, and natural resource management initiatives, to improve orphan crop yields, enhance crop diversity, and increase rural incomes through orphan crop production.

Another priority research area is development of biofuels. As countries seek energy self-reliance and look for alternatives to food and feed subsidies under World Trade Organization (WTO) rules, the conversion of corn, sugar, and soybeans to ethanol and other energy sources becomes more attractive. New extraction methods are making the technology more efficient, and high crude oil prices are fundamentally changing the economics of biomass energy conversion. A large switch by key export food and feed suppliers, such as the United States and Brazil, to biofuels could fundamentally alter export prices, and hence the world food and feed situation. A team of FSE researchers will assess the true costs of these conversions.

The FSE program recently received a grant through the Presidential Fund for Innovation in International Studies to initiate new research activities. One project links ongoing research at Stanford on the environmental and resource costs of industrial livestock production and trade to assess the extent of Brazil’s rainforest destruction for soybean production. “Tens of millions of hectares of native grassland and rainforest are currently being cleared for soybean production to supply the global industrial livestock sector,” says Naylor. An interdisciplinary team will examine strategies to achieve an appropriate balance between agricultural commodity trade, production practices, and conservation in Brazil’s rainforest states.

“I’m extremely pleased to see the rapid growth of FSE and am encouraged by the recent support provided through the new Presidential Fund,” states Naylor. “It enables the program to engage faculty members from economics, political science, biology, civil and environmental engineering, earth sciences, and medicine—as well as graduate students throughout the university—in a set of collaborative research activities that could significantly improve human well-being and the quality of the environment.”

All News button
1
News Type
News
Date
Paragraphs

A non-governmental organization co-run by FSE graduate student Rodrigo Pizzaro has won a Tech Museum award in recognition of its "innovative work benefiting humanity". The NGO, Fundacion Terram, is an integrated salmon-seaweed cultivation project based in Santiago, Chile which attaches algae to a salmon-net pen to absorb nutrients from the salmon to clean the environment. This technology reduces the demand for natural seaweed using an environmentally and socially integrated approach. "The Tech Awards are an incredible honor, recognizing individuals and organizations whose ideas and execution of those ideas are changing the world", said Rodrigo Pizarro, ex Terram CEO and current IPER grad student, and leader of the project team. "We are proud to be among those recognized for their contributions, and will continue to develop solutions that improve the overall well being of people worldwide."

Sponsored by The Tech Museum of Innovation, one of the country's premier science and technology museums, and presented by Applied Materials, Inc., The Tech Museum Awards honor individuals who are applying technology to benefit humanity and spark global change. Fundacion Terram was selected from hundreds of nominations sent from 68 countries. "The Tech Awards are an opportunity to showcase how technology and innovation are addressing global challenges", said Peter Friess, President of The Tech. Fundacion Terram has made remarkable contributions toward significantly improving the human condition.

All News button
1

Energy and Environment Building
473 Via Ortega
Stanford CA 94305

(650) 721-6207
0
Professor, Earth System Science
Senior Fellow at the Freeman Spogli Institute for International Studies
Senior Fellow at the Stanford Woods Institute for the Environment
Senior Fellow at the Stanford Institute for Economic Policy Research (SIEPR)
Affiliate, Precourt Institute of Energy
shg_ff1a1284.jpg
PhD

David Lobell is the Benjamin M. Page Professor at Stanford University in the Department of Earth System Science and the Gloria and Richard Kushel Director of the Center on Food Security and the Environment. He is also the William Wrigley Senior Fellow at the Stanford Woods Institute for the Environment, and a senior fellow at the Freeman Spogli Institute for International Studies (FSI) and the Stanford Institute for Economic Policy and Research (SIEPR).

Lobell's research focuses on agriculture and food security, specifically on generating and using unique datasets to study rural areas throughout the world. His early research focused on climate change risks and adaptations in cropping systems, and he served on the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report as lead author for the food chapter and core writing team member for the Summary for Policymakers. More recent work has developed new techniques to measure progress on sustainable development goals and study the impacts of climate-smart practices in agriculture. His work has been recognized with various awards, including the Macelwane Medal from the American Geophysical Union (2010), a Macarthur Fellowship (2013), the National Academy of Sciences Prize in Food and Agriculture Sciences (2022) and election to the National Academy of Sciences (2023).

Prior to his Stanford appointment, Lobell was a Lawrence Post-doctoral Fellow at Lawrence Livermore National Laboratory. He holds a PhD in Geological and Environmental Sciences from Stanford University and a Sc.B. in Applied Mathematics from Brown University.

CV
Authors
Ashley M. Dean
Rosamond L. Naylor
Rosamond Naylor
News Type
News
Date
Paragraphs

This past autumn the Freeman Spogli Institute for International Studies (FSI) in conjunction with the Woods Institute for the Environment launched a program on Food Security and the Environment (FSE) to address the deficit in academia and, on a larger scale, the global dialogue surrounding the critical issues of food security, poverty, and environmental degradation.

"Hunger is the silent killer and moral outrage of our time; however, there are few university programs in the United States designed to study and solve the problem of global food insecurity," states program director Rosamond L. Naylor. "FSE's dual affiliation with FSI and the new Stanford Institute for the Environment position it well to make significant steps in this area."

Through a focused research portfolio and an interdisciplinary team of scholars led by Naylor and CESP (Center for Environmental Science and Policy) co-director Walter P. Falcon, FSE aims to design new approaches to solve these persistent and under-prioritized problems, expand higher education on food security and the environment at Stanford, and provide direct policy outreach.

Productive food systems and their environmental consequences are at the core of the program. While many of these systems are global in character, but they are influenced significantly by differing food objectives, income level, and instruments among nations. The program thus seeks to understand the food security issues that are of paramount interest to poor countries, the food diversification challenges that are a focus of middle-income nations, and the food safety and subsidy concerns prominent in richer nations.

Chronic hunger in a time of prosperity

Although the world's supply of basic foods has doubled over the past century, roughly 850 million people (12 percent of the world's population) suffer from chronic hunger. Food insecurity deaths during the past 20 years outnumber war deaths by a factor of at least 5 to 1. Food insecurity is particularly widespread in agricultural regions where resource scarcity and environmental degradation constrain productivity and income growth.

FSE is currently assessing the impacts of climate variability on food security in Asian rice economies. This ongoing project combines the expertise of atmospheric scientists, agricultural economists, and policy analysts to understand and mitigate the adverse effects of El Niño-related climate variability on rice production and food security under current and future global warming conditions. As a consequence of Falcon and Naylor's long-standing roles as policy advisors in Indonesia, models developed through this project have already been embedded into analytical units within Indonesia's Ministry of Agriculture, the Planning Ministry, and the Ministry of Finance.

"With such forecasts in hand, the relevant government agencies are much better equipped to mitigate the negative consequences of El Niño events on incomes and food security in the Indonesian countryside," explain Falcon and Naylor.

Food diversification and intensification

With rapid income growth, urbanization, and population growth in developing economies, priorities shift from food security to the diversification of agricultural production and consumption. "Meat production is projected to double by 2020" states Harold A. Mooney, CESP senior fellow and an author of the Millennium Ecosystem Assessment. "In China alone, meat consumption has more than doubled in the past generation." As a result, land once used to provide grains for humans now provides feed for hogs and poultry.

These trends will have major consequences on the global environment-affecting the quality of the atmosphere, water, and soil due to nutrient overloads; impacting marine fisheries both locally and globally through fish meal use; and threatening human health, as, for example, through excessive use of antibiotics.

An FSE project is looking at these trends as it relates to intensive livestock production and assessing the environmental impacts to gain a better understanding of the true costs of this resource-intensive system. A product of this work recently appeared as a Policy Forum piece in the December 9, 2005, issue of Science titled "Losing the Links Between Livestock and Land".

Numerous factors have contributed to the global growth of livestock systems, lead author Naylor notes, including declining feed-grain prices, relatively inexpensive transportation costs, and trade liberalization. "But many of the true costs remain largely unaccounted for," she says. Those costs include destruction of forests and grasslands to provide farmland for corn, soybeans, and other feed crops destined not directly for humans but for livestock; utilization of large quantities of freshwater; and nitrogen losses from croplands and animal manure.

Naylor and her research team are seeking better ways to track all costs of livestock production, especially the hidden ones related to ecosystem degradation and destruction. "What is needed is a re-coupling of crop and livestock systems," Naylor says. "If not physically, then through pricing and other policy mechanisms that reflect social costs of resource use and ecological abuse."

Such policies "should not significantly compromise the improving diets of developing countries, nor should they prohibit trade," Naylor adds. Instead, they should "focus on regulatory and incentive-based tools to encourage livestock and feed producers to internalize pollution costs, minimize nutrient run-off, and pay the true price of water."

Looking ahead

The future of the program on Food Security and the Environment looks bright, busy, and expansive. While a varied portfolio of projects is in line for the upcoming year, a strong emphasis remains in the area of food security. Building on existing research at Stanford, researchers are identifying avenues for enhancing orphan crop production in the world's least developed countries-crops with little international trade and investment, but with high local value in terms of food and nutrition security. The work seeks to identify advanced genetic and genomic strategies, along with natural resource management strategies, to improve orphan crop yields and stability, enhance crop diversity, and increase rural incomes through orphan crop production.

Another priority area of research centers on the development of biofuels. Biofuels are becoming increasingly a part of the policy set for world food and agriculture. As countries such as the United States seek energy self-reliance and look for alternatives to food and feed subsidies under WTO (World Trade Organization) rules, the conversion of corn, sugar, and soybeans to ethanol and other energy sources becomes more attractive. New extraction methods are making the technology more efficient, and crude oil prices at $60 per barrel are fundamentally changing the economics of biomass energy conversion. A large switch by key export food and feed suppliers, such as the United States and Brazil, to biofuels could fundamentally alter export prices, and hence the world food and feed situation. A team of FSE researchers will assess the true costs of these conversions.

The FSE program recently received a grant through the Presidential Fund for Innovation in International Studies to initiate new interdisciplinary research activities. One such project links ongoing research at Stanford on the environmental and resource costs of industrial livestock production and trade to assess the extent and rate of Brazil's rainforest destruction for soybean production. "Tens of millions of hectares of native grassland and rainforest are currently being cleared for soybean production to supply the global industrial livestock sector," says Naylor. A significant share of Brazil's soybeans is being shipped to China, where rapid income growth is fueling tremendous increases in meat consumption."

A team of remote-sensing experts, ecologists, agronomists, and economists will be looking at the ecological effects on the landscape through biogeochemical changes and biodiversity loss, the impacts of land clearing on the regional hydrologic cycle and climate change, the economic patterns of trade, and the role of policies to achieve an appropriate balance between agricultural commodity trade, production practices, and conservation in Brazil's rainforest states.

"I'm extremely pleased to see the rapid growth of FSE and am encouraged by the recent support provided through the Presidential Fund for Innovation in International Studies," states Naylor. "It enables the program to engage faculty members from economics, political science, biology, civil and environmental engineering, earth sciences, and medicine-as well as graduate students throughout the university-in a set of collaborative research activities that could significantly improve human well-being and the quality of the environment."

All News button
1
Subscribe to Innovation