Fisheries
All Publications button
1
Publication Type
Journal Articles
Publication Date
Subtitle

The sustainability of aquaculture has been debated intensely since 2000, when a review on the net contribution of aquaculture to world fish supplies was published in Nature. This paper reviews the developments in global aquaculture from 1997 to 2017, incorporating all industry sub-sectors and highlighting the integration of aquaculture in the global food system. Inland aquaculture—especially in Asia—has contributed the most to global production volumes and food security. Major gains have also occurred in aquaculture feed efficiency and fish nutrition, lowering the fish-in–fish-out ratio for all fed species, although the dependence on marine ingredients persists and reliance on terrestrial ingredients has increased. The culture of both molluscs and seaweed is increasingly recognized for its ecosystem services; however, the quantification, valuation, and market development of these services remain rare. The potential for molluscs and seaweed to support global nutritional security is underexploited. Management of pathogens, parasites, and pests remains a sustainability challenge industry-wide, and the effects of climate change on aquaculture remain uncertain and difficult to validate. Pressure on the aquaculture industry to embrace comprehensive sustainability measures during this 20-year period have improved the governance, technology, siting, and management in many cases.

Journal Publisher
Nature
Authors
Rosamond L. Naylor
Paragraphs

As the global population and people’s incomes rise, the demand for ocean-derived food will continue to grow. At the same time, hunger and malnutrition continues to be a challenge in many countries, particularly in rural or developing areas. Looking to the ocean as a source of protein produced using low-carbon methodologies will be critical for food security, nutrition and economic stability, especially in coastal countries where hunger and malnutrition are a challenge. Yet these advances in ocean production can only be achieved with a concurrent focus on addressing threats to ocean health, such as climate change and overfishing.

All Publications button
1
Publication Type
Conference Memos
Publication Date
Journal Publisher
High Level Panel for a Sustainable Ocean Economy
Authors
Rosamond L. Naylor
News Type
News
Date
Paragraphs

The Ecological Society of America (ESA) has named William Wrigley Professor and FSE Founding Director ROSAMOND NAYLOR as one of its 2019 Fellows. The lifetime appointment recognizes Naylor for “designing ecologically and economically sound practices that protect native species and enhance global food security in marine and terrestrial ecosystems,” according to the ESA’s April 4th  announcement.  

Naylor, a professor with the School of Earth, Energy & Environmental Sciences, also is a senior fellow at the Stanford Woods Institute for the Environment and the Freeman Spogli Institute for International Studies.

ESA fellows are recognized for “outstanding contributions to a wide range of fields served by ESA, including, but not restricted to, those that advance or apply ecological knowledge in academics, government, nonprofit organizations and the broader society” and are elected for life. As part of the fellowship  

 “I’m particularly honored because I have been trained formally as an economist, but my most creative and impactful work has been done in collaboration with ecologists," Naylor said. "My colleagues in ecology have inspired me to ask really interesting questions at the interface of global food systems and natural ecosystems, and I have learned a great deal in the process.”

All News button
1
-

Massive changes in the global food sector over the next few decades – driven by climate change and other environmental stresses, growing population and income, advances in technology, and shifts in policies and trade patterns – will have profound implications for the oceans. Roz Naylor, Senior Fellow and Founding Director of Stanford’s Center on Food Security and the Environment,  will discuss the interplay between terrestrial and marine food systems, highlighting the rising role of aquaculture in helping to meet the nutritional demands of 9-10 billion people by 2050. As a platform for her talk, she will introduce a new research initiative at Stanford on “Oceans and the Future of Food”, co-led by the Center for Oceans Solutions (COS) and the Center on Food Security and the Environment (FSE).

Free Admission is by reservation only. Please call 831-655-6200 between 8:30AM – 5:00PM, Mon-Fri, or RSVP at the Friends of Hopkins web page.

Contact:
Amanda Whitmire
831-655-6200
thalassa@stanford.edu

Boat Works Lecture Hall, Hopkins Marine Station

Lectures
Authors
Nicole Kravec, Stanford Center for Ocean Solutions
News Type
News
Date
Paragraphs
Stanford’s Center for Ocean Solutions and Center on Food Security and the Environment, together with Springer-Nature, are hosting a workshop focused on building a research agenda that, for the first time, analyzes the role of oceans within the context of global food systems.
 
Massive changes in the global food sector over the next few decades – driven by climate change and other environmental stresses, growing population and income, advances in technology, and shifts in policies and trade patterns – will have profound implications for the oceans and vice versa. While there is a large community of researchers addressing challenges in food policy and agriculture and a similar community in oceans and fisheries, there is very little interaction between them. This workshop addresses a pressing need to foster more interaction among these communities, to build a research agenda that illuminates the many interconnections among food and the oceans, and to inform action to meet these challenges.
 
“Stanford is in a perfect position to take the lead in developing this new area of research and outreach, with its strong expertise in terrestrial food systems, global food security, and the oceans,” claims Roz Naylor, Professor of Earth System Science, founding Director of the Center on Food Security and the Environment, and co-organizer of the workshop.
 
This event brings together diverse leaders across academia, business, policy, and government. Together participants will analyze the role of the oceans within a global food systems context, highlighting issues related to food security, equity, poverty alleviation, marine ecosystems, and environmental change. The aim is to define and develop this emerging field, as researchers and stakeholders explore cutting edge ideas and identify emerging trends and challenges that can inform ongoing policy discussions.
 

“This is a unique opportunity to build a new and vibrant community, bringing together leading researchers in oceans, fisheries, food, and agriculture from around the world," explained COS co-director Jim Leape. "We're coming together to ask the key questions needed to identify emerging themes and solutions, in lockstep with those who will put these findings into practice," added COS co-director Fiorenza Micheli. "As the world's demand for food continues to grow, we will increasingly need to understand and act on the critical role of the oceans to meet these challenges."

Jim Leape is also the William and Eva Price Fellow at the Stanford Woods Institute for the Environment. Fiorenza Micheli is also the David and Lucile Packard Professor in Marine Sciences at Stanford's Hopkins Marine Station and senior fellow at the Woods Institute. Read more about the Stanford Center for Ocean Solutions.

 

All News button
1
Paragraphs

Aquaculture in many countries around the world has become the biggest source of seafood for human consumption. While it alleviates the pressure on wild capture fisheries, the long-term impacts of large-scale, intensive aquaculture on natural coastal systems need to be better understood. In particular, aquaculture may alter habitat and exceed the carrying capacity of coastal marine ecosystems. In this paper, we develop a high-resolution numerical model for Sanggou Bay, one of the largest kelp and shellfish aquaculture sites in Northern China, to investigate the effects of aquaculture on nutrient transport and residence time in the bay. Drag from aquaculture is parameterized for surface infrastructure, kelp canopies, and bivalve cages. A model for dissolved inorganic nitrogen (DIN) includes transport, vertical turbulent mixing, sediment and bivalve sources, and a sink due to kelp uptake. Test cases show that, due to drag from the dense aquaculture and thus a reduction of horizontal transport, kelp production is limited because DIN from the Yellow Sea is consumed before reaching the interior of the kelp farms. Aquaculture drag also causes an increase in the nutrient residence time from an average of 5 to 10 days in the middle of Sanggou Bay, and from 25 to 40 days in the shallow inner bay. Low exchange rates and a lack of DIN uptake by kelp make these regions more susceptible to phytoplankton blooms due to high nutrient retention. The risk is further increased when DIN concentrations rise due to river inflows.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Environmental Fluid Mechanics
Authors
Bing Wang
Ling Cao
Fiorenza Micheli
Rosamond L. Naylor
Oliver B. Fringer
Paragraphs

Worldwide, humans are facing high risks from natural hazards, especially in coastal regions with high population densities. Rising sea levels due to global warming are making coastal communities’ infrastructure vulnerable to natural disasters. The present study aims to provide a coupling approach of vulnerability and resilience through restoration and conservation of lost or degraded coastal natural habitats to reclamation under different climate change scenarios. The Integrated Valuation of Ecosystems and Tradeoffs (InVEST) model is used to assess the current and future vulnerability of coastal communities. The model employed is based on seven different bio-geophysical variables to calculate a Natural Hazard Index (NHI) and to highlight the criticality of the restoration of natural habitats. The results show that roughly 25 percent of the coastline and more than 5 million residents are in highly vulnerable coastal areas in China, and these numbers are expected to double by 2100. Our study suggests that restoration and conservation in recently reclaimed areas have the potential to reduce this vulnerability by 45 percent. Hence, natural habitats have proved to be a great defense against coastal hazards and should be prioritized in coastal planning and development. The findings confirm that natural habitats are critical for coastal resilience and can act as a recovery force of coastal functionality loss. Therefore, we recommend that the Chinese government prioritize restoration where possible and conservation of the remaining habitats for the sake of coastal resilience to prevent natural hazards from escalating into disasters.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Earth's Future
Authors
Muhammad Sajjad, Yangfan Li, Zhenghong Tang
Ling Cao
Xiaoping Liu
Paragraphs

Globally, demand for food animal products is rising. At the same time, we face mounting, related pressures including limited natural resources, negative environmental externalities, climate disruption, and population growth. Governments and other stakeholders are seeking strategies to boost food production efficiency and food system resiliency, and aquaculture (farmed seafood) is commonly viewed as having a major role in improving global food security based on longstanding measures of animal production efficiency. The most widely used measurement is called the 'feed conversion ratio' (FCR), which is the weight of feed administered over the lifetime of an animal divided by weight gained. By this measure, fed aquaculture and chickens are similarly efficient at converting feed into animal biomass, and both are more efficient compared to pigs and cattle. FCR does not account for differences in feed content, edible portion of an animal, or nutritional quality of the final product. Given these limitations, we searched the literature for alternative efficiency measures and identified 'nutrient retention', which can be used to compare protein and calories in feed (inputs) and edible portions of animals (outputs). Protein and calorie retention have not been calculated for most aquaculture species. Focusing on commercial production, we collected data on feed composition, feed conversion ratios, edible portions (i.e. yield), and nutritional content of edible flesh for nine aquatic and three terrestrial farmed animal species. We estimate that 19% of protein and 10% of calories in feed for aquatic species are ultimately made available in the human food supply, with significant variation between species. Comparing all terrestrial and aquatic animals in the study, chickens are most efficient using these measures, followed by Atlantic salmon. Despite lower FCRs in aquaculture, protein and calorie retention for aquaculture production is comparable to livestock production. This is, in part, due to farmed fish and shrimp requiring higher levels of protein and calories in feed compared to chickens, pigs, and cattle. Strategies to address global food security should consider these alternative efficiency measures.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Environmental Research Letters, Volume 13, Number 2
Authors
Jillian Fry, Nicholas Mailloux, David Love, Michael Milli
Ling Cao
Authors
Ling Cao
Rosamond L. Naylor
Patrik Henriksson, Duncan Leadbitter, Max Troell, Wenbo Zhang
News Type
News
Date
Paragraphs

As authors of “China’s aquaculture and the world’s fisheries” (Cao et al., Science, 2015), we would like to dispute several claims presented in “A revisit to fishmeal usage and associated consequences in Chinese aquaculture” (Han et al.,§ Reviews in Aquaculture, 2016), as the latter seriously misrepresents the intent and substance of  our Science paper.

In their review, Han and colleagues argue that although China’s aquaculture volume continues to grow, its fishmeal usage remains stable, and the sector will therefore indirectly reduce pressure on wild fish stocks worldwide. In the process, they claim that we do not acknowledge the important contribution of the Chinese aquaculture sector to global food supply. They also claim that we criticize the sector’s excessive use of fishmeal and that we trot out the “Chinese aquaculture threat” theory. We are aware of Han and colleagues’ comprehensive work on substitution and sustainable sourcing of fishmeal and fish oil in aquaculture, which is clearly aligned with our perspective. However, we believe that the underlying intention of our Science paper has been seriously misinterpreted, and there are several inaccuracies in their review that are important to clarify and correct.

Here, we emphasize and reiterate the key points in our paper: China’s impact on marine ecosystems and global seafood supplies is unrivaled given its dominant role in fish production, consumption, processing and trade. Its aquaculture sector, by far the world’s largest, is of enormous global importance for meeting the rising demand for food and particularly for protein. Understanding the implications of the industry’s past and current practices is important for managing its future impacts and improving its sustainability. The country’s nonspecific and erroneous reporting of fish production and trade makes it especially difficult to access the impact of China’s aquaculture and aquafeed use on global wild fisheries. We unraveled the complicated nature of China’s expanding aquaculture sector and its multifaceted use of fish inputs in feeds, to the best of our abilities. We also developed a roadmap for China’s aquaculture to become self-supporting of fishmeal by recycling processing wastes from its farmed products as feed. We showed that if food safety and supply chain constraints can be overcome, extensive use of fish processing waste in feeds could help China meet one-half or more of its current fishmeal demand, thus greatly reducing pressure on domestic and international fisheries. In addition, we suggested China to commit to stricter enforcement of regulations on capture fisheries and to responsible sourcing of fishmeal and fish oil, as well as to improve its data reporting and sharing on the status of fisheries stocks, aquaculture practices, production, and trade.

We would like to respond specifically to the following points in Han et al (2016):

1.     “Role of China’s aquaculture in meeting the rising demand for fish at home and abroad is not acknowledged by Cao et al., 2015.”

Our response: Our paper conveys a clear message that China’s aquaculture industry is by far the world’s largest and of great importance for meeting the rising domestic and global demand for fish and protein.

2.     “China contributes more than 60% to the global aquaculture output and is expected to contribute 38% to the global food fish supply by 2030, however costs only 25-30% of the world fishmeal. The above facts are contradictory to the views expressed that Chinese aquaculture is a threat to the world’s wild fish resources (Cao et al., 2015). China’s aquaculture and aquafeed industry have some special features leading to the steady fishmeal usage, which consequently does not impose additional stressors on the world wild fish stocks, drawing a conflicting conclusion to that found in Naylor et al. (2000, 2009) and Cao et al. (2015).”

Our response: Our paper clearly indicates that China is a net contributor of fish (fed fish). The table in our paper shows that from 5 million metric tons (mmt) forage fish equivalents, 14.4 mmt of finfish and shrimp were produced in 2012 (21 mmt is the total but with the non-fed carp species having been subtracted). Moreover, we write: “If China is to increase its net production of fish protein, its aquaculture industry will need to reduce FCRs and the inclusion of fish ingredients in feeds and to improve fishmeal quality”. Thus, we are not asserting that China consumes more fish than the fed fish it produces, but rather we are challenging the industry to further increase its current net production of fish protein.

While China’s fishmeal import has been stable at a level of 1-1.5 mmt over the past decade, it should be noted that the use of fishmeal for aquaculture has increasingly been diverted from the livestock to aquaculture sector. There are no official statistics specifying in which sector the fishmeal is used. One market trend study published in Chinese stated that the share of fishmeal use for aquaculture in China has exceeded the share used by livestock since 2010, growing from 38 percent (0.73 mmt) in 2005 to 64 percent (0.96 mmt) in 2011 (see Fig. 1). Our observation is consistent with the literature that supports a trend of shifting in fishmeal use from other sectors towards aquaculture (De Silva and Turchini, 2008).

We agree that China has made remarkable progress in identifying alternative ingredients for substituting fishmeal and fish oil in aquafeeds, especially for low-trophic level species. We are more concerned with the high inclusion rate of fishmeal in high-trophic carnivorous species and using trash fish as feeds for aquaculture. 

Image
fishmeal

Figure 1. Fishmeal use in China (Chen 2012)

 

3.      “China’s domestic fishmeal production is based on processing waste and trash fish.”

Our response: Han and colleagues confirmed our observations. However, we are more concerned with the impacts of harvesting low-value trash fish species on the structure and functioning of marine ecosystems and global food security (Smith et al., 2011). Multi-species (non-targeted) catch, commonly designated as “marine fish nei” (nei: not elsewhere included) by FAO, surpasses the catch of any individual species in China’s ocean capture fisheries. Combined with by-catch and other poor quality fish from targeted fisheries, it is a major contributor to what the international research community often refers to as low-value “trash fish”. Although these fish resources are considered to be “low-value” in the market, they are derived from fisheries that have a higher social value for direct human consumption and marine ecosystems (Tacon et al., 2006). Whilst it is true that trash fish includes naturally small fish, it is also true that significant numbers of juvenile fish are also taken and, in combination with poorly regulated fisheries, this take of juvenile fish undoubtedly contributes to the poor status of many fish stocks. Virtually all of the fish hauled out of the ocean by Chinese vessels are put to economic use, first for human consumption, and then for feeds and other purposes. Large amounts of trash fish are being used for fishmeal production and China’s high-value marine aquaculture uses around 3 mmt of trash fish each year for direct feeding. Notwithstanding the improvements in feed efficiency demonstrated by Han et al relieves the issue of overfishing, China’s increased use of trash fish for aquaculture deserves further investigation.

4.     Data quality issue: “Survey data in the studies of Chiu et al. (2013) and Cao et al. (2015) from only four provinces of China, Guangdong, Shandong, Zhejiang, and Hainan don’t fully represent the status of Chinese aquaculture, in particular freshwater aquaculture.”

Our response: We present data and analyses based on not only primary field surveys and observations from the four major aquaculture producing regions in China, but also on national production and trade statistics, and scientific papers from the Chinese and international literature. We use the same national fisheries statistics databases as Han and colleagues do. In terms of our field data collection, Guangdong and Shandong provinces are the top two aquaculture producers in China. The four provinces together account for over one third of China’s aquaculture production and one quarter of its freshwater aquaculture output by volume. The field data were based on in-depth field surveys conducted by Stanford University and the EU-FP7 Sustaining Ethical Aquaculture Trade (SEAT) project during the year of 2010-2012. The surveys focused on carp, tilapia, and shrimp systems, which represent three of the largest aquaculture sub-sectors in China along a spectrum of low- to high-valued species and account for over 50% of the country’s aquaculture output by volume. So we are confident that the provinces that we selected are representative for the farming systems in focus.

As highlighted in both publications, obtaining this type of data from China is notoriously difficult. Our reliance on information from only four provinces is due to the lack of publicly available studies of trash fish catches in other studies and the lack of regular monitoring of catches and stock status. Given the uncertainty involved and the difficulty in obtaining more accurate data, we have endeavored to provide the best available data from primary and secondary sources in order to demonstrate how dependence on fishmeal from targeted and non-targeted fisheries can be substantially reduced. In order to bring as much rigor to the analysis as possible, we have also incorporated uncertainty analysis via Monte Carlo simulation. Many scientists agree that this is a fair approach and our analysis is valid.

Closing Remarks

There is no question that China’s aquaculture will remain a dominant industry domestically and internationally in the future. At the global scale, the sector has expanded at an annual rate of 8.8% during the past three decades—faster than any other animal food sector—and it currently accounts for about half of all fish produced for human consumption. Within this dynamic context, China’s aquaculture sector remains an important “black box” for many scientists and policy analysts with respect to farming practices, aquafeed demand, domestic fishmeal production, trash fish consumption, and impacts on global capture fisheries. Our paper helps to crack open this black box, and it provides an integrated and innovative perspective on the status and trends of China’s aquaculture development. If Han and colleagues have more accurate data to share, we would be more than happy to take these data into account in our attempt to map the fishmeal use in China and steer China’s aquaculture industry towards best practice. To that end, we recommend that China establishes a public process for data reporting and sharing on fisheries stock status, aquaculture practices, production, and trade.

We hope these responses have clarified the misinterpretations of our paper by Han et al. (2016), and that these points can be corrected accordingly. It is important to note that we, the study authors, and Han et al. are clearly united in the recognition that China’s aquaculture industry is a key component of meeting the country’s and the world’s growing protein needs. We also agree on the importance of sustainable aquaculture practices in China that safeguard the health of wild fisheries at home and abroad. We truly believe in China’s commitment to the development of more sustainable and responsible aquaculture practices based on ecological principles. We look forward to a more positive intellectual exchange with Han and colleagues in the future as we strive for this common goal.

Ling Cao[1],*, Rosamond Naylor1 , Patrik Henriksson2,3, Duncan Leadbitter4, Max Troell3, 5, Wenbo Zhang6



[1]Center on Food Security and the Environment, Stanford University, Stanford, CA 94035, USA. 2WorldFish, Penang, Malaysia 3Stockholm Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden. 4University of Wollongong, Wollongong NSW 2522, Australia. 5The Royal Swedish Academy of Sciences, 104 05 Stockholm, Sweden. 6Shanghai Ocean University, Shanghai 201306, China. *Correspondence should be addressed to L. Cao (email: caoling@stanford.edu).

§Han, D., Shan, X., Zhang, W., Chen, Y., Wang, Q., Li, Z., Zhang, G., Xu, P., Li, J., Xie, S., Mai, K., Tang, Q., De Silva, S. (2016), Reviews in Aquaculture. Article in Press

 

References

Cao, L., Naylor, R.L, Henriksson, P., Leadbitter, D., Metian, M., Troell, M., & Zhang, W. (2015). China's aquaculture and the world's wild fisheries. Science347(6218), 133-135.

Chen, M. (2012). Fishmeal Market Analysis and Outsourcing Strategy in 2012 (in Chinese). Fisheries Advance Magazine, (4), 95–97. Available at: http://d.wanfangdata.com.cn/Periodical_hyyyy-scqy201204059.aspx.

Chiu, A., Li, L., Guo, S., Bai, J., Fedor, C., Naylor, R.L. (2013). Feed and fishmeal use in the production of carp and tilapia in China. Aquaculture414, 127-134.

De Silva, S. S., and Turchini, G. M. (2008). Towards understanding the impacts of the pet food industry on world fish and seafood supplies. Journal of agricultural and environmental ethics21(5), 459-467.

Han, D., Shan, X., Zhang, W., Chen, Y., Wang, Q., Li, Z., Zhang, G., Xu, P., Li, J., Xie, S., Mai, K., Tang, Q., De Silva, S. (2016). A revisit to fishmeal usage and associated consequences in Chinese aquaculture. Reviews in Aquaculture. In press.

Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C., Clay, J., Folke, C., Lubchenco, J., Mooney, H. and Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature405(6790), 1017-1024.

Naylor, R.L., Hardy, R.W., Bureau, D.P., Chiu, A., Elliott, M., Farrell, A.P., Forster, I., Gatlin, D.M., Goldburg, R.J., Hua, K., Nichols, P.D. (2009). Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences106(36), 15103-15110.

Smith, A.D., Brown, C.J., Bulman, C.M., Fulton, E.A., Johnson, P., Kaplan, I.C., Lozano-Montes, H., Mackinson, S., Marzloff, M., Shannon, L.J., Shin, Y.J. (2011). Impacts of fishing low–trophic level species on marine ecosystems. Science333(6046), 1147-1150.

Tacon, A.G.J, Hasan, M.R., Subasinghe, R.P. (2006). FAO Fisheries Circular. No.1018; FAO 2010. FAO Fisheries and Aquaculture Report. No. 949.

 

 

All News button
1
Subscribe to Fisheries