Health and the Environment
-

The Human and Planetary Health initiative at the Stanford Woods Institute for the Environment is hosting a dialogue with Chris Field, Director of the Stanford Woods Institute for the Environment and Reginaldo Haslett-Marroquin, an expert in regenerative poultry production and practicing regenerative farmer. Learn more and register on the event page.

Y2E2 Rm 300

Jerry Yang & Akiko Yamazaki Environment & Energy Bldg.
473 Via Ortega, Room 221
Stanford, CA 94305
Phone: 650.736.4352

0
Perry L. McCarty Director of the Stanford Woods Institute for the Environment.; Professor for Interdisciplinary Environmental Studies, School of Earth, Energy & Environmental Sciences; FSI Senior Fellow, by courtesy
chris_field.png
PhD

Chris Field is the Perry L. McCarty Director of the Stanford Woods Institute for the Environment.

His research focuses on climate change, ranging from work on improving climate models, to prospects for renewable energy systems, to community organizations that can minimize the risk of a tragedy of the commons.

Field has been deeply involved with national and international scale efforts to advance science and assessment related to global ecology and climate change. He served as co-chair of Working Group II of the Intergovernmental Panel on Climate Change from 2008-2015, where he led the effort on the IPCC Special Report on “Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation” (2012) and the Working Group II contribution to the IPCC Fifth Assessment Report (2014) on Impacts, Adaptation, and Vulnerability.

Field assumed leadership of the Stanford Woods Institute for the Environment in September 2016. His other appointments at Stanford University include serving as the Melvin and Joan Lane Professor for Interdisciplinary Environmental Studies in the School of Humanities and Sciences; Professor of Earth System Science in the School of Earth, Energy & Environmental Sciences; and Senior Fellow with the Precourt Institute for Energy. Prior to his appointment as Woods' Perry L. McCarty Director, Field served as director of the Carnegie Institution for Science's Department of Global Ecology, which he founded in 2002. Field's tenure at the Carnegie Institution dates back to 1984.

His widely cited work has earned many recognitions, including election to the U.S. National Academy of Sciences, the Max Planck Research Award, the American Geophysical Union’s Roger Revelle Medal and the Stephen H. Schneider Award for Outstanding Science Communication. He is a fellow of the American Academy of Arts and Sciences, the American Association for the Advancement of Science, and the Ecological Society of America.

Field holds a bachelor’s degree in biology from Harvard College and earned his Ph.D. in biology from Stanford in 1981.

Panel Discussions
Paragraphs

Deforestation and landscape fragmentation have been identified as processes enabling direct transmission of zoonotic infections. Certain human behaviors provide opportunities for direct contact between humans and wild nonhuman primates (NHPs), but are often missing from studies linking landscape level factors and observed infectious diseases.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Landscape Ecology
Authors
Eric Lambin
-

Join us for a talk with agricultural and development economist Christopher B. Barrett, this quarter’s visiting scholar with the Center on Food Security and the Environment. Barrett is the Stephen B. and Janice G. Ashley Professor of Applied Economics and Management and an International Professor of Agriculture with Cornell’s Dyson School of Applied Economics and Management.

Professor Barrett will discuss food systems advances over the past 50 years that have promoted unprecedented reduction globally in poverty and hunger, averted considerable deforestation, and broadly improved lives, livelihoods and environments in much of the world. He’ll share perspectives on the reasons why, despite those advances, those systems increasingly fail large communities in environmental, health, and increasingly in economic terms and appear ill-suited to cope with inevitable further changes in climate, incomes, and population over the coming 50 years. Barrett will explore the new generation of innovations underway that must overcome a host of scientific and socioeconomic obstacles.
 
Also a Professor of Economics in the Department of Economics, Barrett is co-editor in chief of the journal Food Policy, is a faculty fellow with David R. Atkinson Center for a Sustainable Future and serves as the director of the Stimulating Agriculture and Rural Transformation (StART) Initiative housed at the Cornell International Institute for Food, Agriculture and Development.
 

Lectures
Paragraphs

The economic costs of Indonesia’s 2015 forest fires are estimated to exceed US $16 billion, with more than 100,000 premature deaths. On several days the fires emitted more carbon dioxide than the entire United States economy. Here, we combine detailed geospatial data on fire and local climatic conditions with rich administrative data to assess the underlying causes of Indonesia’s forest fires at district and village scales. We find that El Niño events explain most of the year-on-year variation in fire. The creation of new districts increases fire and exacerbates the El Niño impacts on fire. We also find that regional economic growth has gone hand-in-hand with the use of fire in rural districts. We proceed with a 30,000-village case study of the 2015 fire season on Sumatra and Kalimantan and ask which villages, for a given level of spatial fire risk, are more likely to have fire. Villages more likely to burn tend to be more remote, to be considerably less developed, and to have a history of using fire for agriculture. Although central and district level policies and regional economic development have generally contributed to voracious environmental degradation, the close link between poverty and fire at the village level suggests that the current policy push for village development might offer opportunities to reverse this trend.


  •  
All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
World Development Journal
Authors
Rosamond L. Naylor
Walter P. Falcon
-

Fighting to End Hunger at Home & Abroad:  Ambassador Ertharin Cousin shares her journey & lessons learned

A Conversation in Global Health with Ertharin Cousin

FSI Payne Distinguished Lecturer | Former Executive Director of the World Food Programme | TIME's 100 Most Influential People

RSVP for conversation & lunch: www.tinyurl.com/CIGHErtharinCousin (please arrive at 11:45 am for lunch)

Professor Ertharin Cousin has been fighting to end global hunger for decades. As executive director of the World Food Programme from 2012 until 2017, she led the world’s largest humanitarian organization with 14,000 staff serving 80 million vulnerable people across 75 countries. As the US ambassador to the UN Agencies for Food and Agriculture, she served as the US representative for all food, agriculture, and nutrition related issues.

Prior to her global work, Cousin lead the domestic fight to end hunger. As chief operating officer at America’s Second Harvest (now Feeding America), she oversaw operations for a confederation of 200 food banks across America that served more than 50,000,000 meals per year.

Stanford School of Medicine Senior Communications Strategist Paul Costello will interview Professor Cousin about her experiences, unique pathway, and the way forward for ending the global hunger crisis.

cid:image002.png@01D509A2.91178F90cid:image003.png@01D509A2.91178F90cid:image004.png@01D509A2.91178F90cid:image005.jpg@01D50A42.AF28BEA0

Li Ka Shing Room 320 

Seminars
Authors
Taylor Kubota
News Type
News
Date
Paragraphs

As more of the greenhouse gas carbon dioxide enters the atmosphere, leading to climate change, crops might carry fewer nutrients, like zinc and iron. Stanford researchers explored this trend and regions most likely to be hurt by it.

As the climate changes, where plants grow best is predicted to shift. Crops that once thrived as a staple in one region may no longer be plentiful enough to feed a community that formerly depended on it. Beyond where plants grow, there’s also the issue of how they grow. Evidence suggests that plants grown in the presence of high carbon dioxide levels aren’t as nutritious.

“Zinc is critical for the immune system and zinc deficiency makes pneumonia, diarrheal illness, malaria more difficult for the body to combat,” said Eran Bendavid, associate professor of medicine. “Iron deficiency has all sorts of manifestations, from lethargy and feeling ill to broader effects, like worse performance in school.”

David Lobell, professor of Earth system science in the School of Earth, Energy & Environmental Sciences, has been studying the relationship between climate change and crops. He was drawn to the relationship between C02 and crop nutrition because his work pairs findings from scientific models with concrete observations.

“Any time you’re looking at data, you need observations that correspond to the conditions you’re trying to understand. But you have to be creative to find data sets that allow for this kind of validation,” Lobell said.

Years of life lost due to less nutritious crops

The researchers estimated how many additional years of healthy life would be lost from 2015 to 2050 due to carbon dioxide-related declines in zinc and iron in crops. This data represents the base case scenario, where carbon dioxide levels climb relatively unabetted. These predictions start at 2015 but health disparities between the regions already existed: at that time, the African Region was losing approximately four times as many healthy years due to these nutrient insufficiencies as the European Region. (Image credit: Yvonne Tang)

Last year, Lobell, Bendavid and Stanford collaborators including management science and engineering graduate student Christopher Weyant, published a paper in which they projected how crop nutrition – zinc and iron levels – will respond to climate change in the coming decades and what that might mean for human health. They looked at two different scenarios, one a base case scenario in which carbon dioxide levels climb relatively unabetted, resulting in a nearly 40 percent increase in carbon dioxide concentrations by 2050. In the other, the group assumed global temperatures would remain within 2 degrees Celsius of pre-industrial levels, as proposed by the Paris Agreement.

For each scenario, they calculated how many years of healthy life people around the world would lose due to illness, disability or death as a result of less iron and zinc in their diet. In the base case scenario, they also explored how different health care interventions, including zinc or iron supplementation, and disease control programs for pneumonia, diarrhea and malaria could help.

Reductions in years of life lost through different interventions

The researchers estimated total years of healthy life lost from 2015 to 2050 due to carbon-dioxide-related zinc and iron deficiencies, with different interventions. The researchers’ predictions showed that keeping to the Paris Agreement goals and reducing greenhouse gas emissions results in far better health outcomes than other solutions, such as supplementing nutrients. (Image credit: Yvonne Tang)

They projected that, by far, the most effective way to reduce the consequences of this carbon dioxide-induced disease burden was to limit the amount of carbon dioxide in the atmosphere. In their model, sticking to Paris Agreement goals avoided 48.2 percent of the healthy years lost to carbon dioxide-induced nutritional diseases. In contrast, providing health care interventions only reduced years of healthy life lost by 26.6 percent.

As with other research on the impact of climate change, these nutritional deficiencies are more likely to affect the poorest people first and most severely. But Lobell cautions against assuming it is a problem happening somewhere else.

“Even in a world that is getting more and more food secure, malnutrition would be among the biggest – if not the biggest – health effects of climate change,” Lobell said.

Lobell is now studying what large and small farms are currently doing to combat climate change and the effectiveness of those efforts. One aspect of this work is his lab’s analysis of high-resolution images from satellites to estimate crop yields from space.

Additional co-authors of the paper are Margaret Brandeau and Marshall Burke of Stanford. Senior author was Sanjay Basu of Stanford. Bendavid is also a member of the Maternal & Child Health Research Institute (MCHRI) and an affiliate of the Stanford Woods Institute for the Environment. Lobell is also a senior fellow at the Freeman Spogli Institute for International Studies, at the Stanford Woods Institute for the Environment and at the Stanford Institute for Economic Policy Research. He is also an affiliate of the Precourt Institute for Energy.

The way we treat the planet has direct consequences on human health. This series of stories explores some of those consequences and what we can do to lessen the risks.

All News button
1
Authors
News Type
News
Date
Paragraphs

In warmer temperatures suicide rates increase, leading to concerns about an uptick in suicides as the globe continues to warm. But researchers offer some hope if greenhouse gases get under control.

As global temperatures rise, climate change’s impacts on mental health are becoming increasingly evident. Recent research has linked elevated temperatures to an increase in violence, stress and decreased cognitive function leading to impacts such as reduced test scores, lowered worker productivity and impaired decision-making.

Adding to the concern, a Stanford study led by economist Marshall Burke also finds a link between increased temperatures and suicide rates. The research, published in Nature Climate Change, concluded that up to 21,000 additional suicides will occur by 2050 within the United States and Mexico if unmitigated climate change continues to warm the Earth at the current projected rates.

Suicide is one of the top 10 causes of death in the United States. Unlike other leading causes – which include heart disease, cancer, homicide and unintentional injury – suicide rates have increased rather than fallen over time. And, while there has been a noticeable trend of rising suicide rates in warmer months, up to this point it has been difficult to attribute these changes to temperature, as other factors like day length and social patterns also vary.

Burke and team overcame these obstacles by assembling and examining decades worth of temperature and suicide data across thousands of U.S. counties and Mexican municipalities. To complement the data, they also scanned over half a billion Twitter updates or tweets and looked for language signaling a negative state of mind.

They found that hotter than average temperatures increase both suicide rates and the use of depressive language on Twitter. They also concluded that socioeconomic status had little to no impact, meaning wealth does not help insulate populations from suicide risk.

“One claim you often hear is that it’s the socioeconomically disadvantaged that are going to be affected by climate change. Our results suggest that at least in the case of mental health, impacts are going to cut across the income distribution and could affect any of us,” Burke said.

He and his team then used global climate model projections to predict how future temperatures could affect suicide rates. They found climate change could increase suicide rates by 1.4 percent in the United States and 2.3 percent in Mexico by 2050.Excess suicides by 2050 caused by warmer temperatures if greenhouse gas emissions stabilize consistent with Paris Agreement goals (move the slider to the right), or if emissions continue unabated (move the slider to the left). (Image credit: Sam Heft-Neal)

Given this increasing overall health burden, the researchers assert even small changes in suicide rates due to climate change could result in large human costs. Also, if similar relationships hold true in other countries, where suicide rates are sometimes even higher than in the U.S. and Mexico, changes in the associated global health burden may be much larger.

“Clearly, climate is not the only factor affecting mental health, and many approaches to addressing the growing mental health challenge will have nothing to do with climate,” Burke said. “But we find clear evidence that a warming climate is going to exacerbate the burden of poor mental health and ignoring this evidence is going to cause unnecessary harm and anguish for a lot of individuals and families inside our country and out.”

The way we treat the planet has direct consequences on human health. This series of stories explores some of those consequences and what we can do to lessen the risks.

 

All News button
1
Paragraphs

Increased intake of fruits and vegetables (F&V) is recommended for most populations across the globe. However, the current state of global and regional food systems is such that F&V availability, the production required to sustain them, and consumer food choices are all severely deficient to meet this need. Given the critical state of public health and nutrition worldwide, as well as the fragility of the ecological systems and resources on which they rely, there is a great need for research, investment, and innovation in F&V systems to nourish our global population. Here, we review the challenges that must be addressed in order to expand production and consumption of F&V sustainably and on a global scale. At the conclusion of the workshop, the gathered participants drafted the “Aspen/Keystone Declaration” (see below), which announces the formation of a new “Community of Practice,” whose area of work is described in this position paper. The need for this work is based on a series of premises discussed in detail at the workshop and summarized herein. To surmount these challenges, opportunities are presented for growth and innovation in F&V food systems. The paper is organized into five sections based on primary points of intervention in global F&V systems: (1) research and development, (2) information needs to better inform policy & investment, (3) production (farmers, farming practices, and supply), (4) consumption (availability, access, and demand), and (5) sustainable & equitable F&V food systems and supply chains.

All Publications button
1
Publication Type
Working Papers
Publication Date
Journal Publisher
Aspen Global Change Institute
Authors
Rosamond L. Naylor
et al.
Authors
News Type
News
Date
Paragraphs

Experts gathered to discuss the linkages between climate change and health at a Stanford-led event at the Global Climate Action Summit.

When it comes to food security, health and poverty, the impacts of climate change already are evident. That’s the message FSE Fellows David Lobell and Marshall Burke delivered last week at Global Climate Action Summit events held by Stanford in San Francisco. Attendees from across the globe gathered at the summit aimed to mobilize commitments and action from local governments, corporations and NGO’s to mitigate climate change and reach the goals of the Paris Agreement. 

Lobell and Burke – a professor and assistant professor (respectively) in Earth system science in Stanford’s School of Earth, Energy & Environmental Sciences participated in the Stanford Woods Institute for the Environment sponsored panel on Sept. 14  “The 2009 EPA ENDANGERMENT FINDING: EVEN STRONGER EVIDENCE in 2018.” Moderated by Stanford Woods Institute Director Chris Field, the panel examined how new research bolsters the original report’s findings that greenhouse gases pose a threat to human health and welfare.

Read the full story.

All News button
1

Y2E2 Bldg, 473 VIA ORTEGA
Dept. Center on Food Security - Room 349
Stanford, CA 94305

 

0
img_3988.jpg

Stefania joined FSE as a research data analyst in March 2018 where she works with David Lobell on designing, implementing, and applying new satellite-based monitoring techniques to study several aspects of food security. 

Her current focuses include estimates of crop yields, crop classification, and detection of management practices in Africa and India using a variety of satellite sensors including Landsat (NASA/USGS), Sentinel 1 and 2 (ESA), combined with crop modeling and machine learning techniques.

Research Data Analyst
Date Label
Subscribe to Health and the Environment