Foreign Policy
Paragraphs

In an editiorial printed in Science magazine, aquaculture specialist Rosamond Naylor comments on the impact of the newly introduced National Offshore Aquaculture bill which establishes a permitting process for offshore aquaculture development within federal waters of the exclusive economic zone (EEZ) and encourages private investment in aquaculture operations, demonstrations, and research.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Science
Authors
Rosamond L. Naylor
Rosamond L. Naylor
Paragraphs

Innovative financial instruments are being created to reward conservation on private, working lands. Major design challenges remain, however, to make investments in biodiversity and ecosystem services economically attractive and commonplace. From a business perspective, three key financial barriers for advancing conservation land uses must frequently be addressed: high up-front costs, long time periods with no revenue, and high project risk due to long time horizons and uncertainty. We explored ways of overcoming these barriers on grazing lands in Hawaii by realizing a suite of timber and conservation revenue streams associated with their (partial) reforestation. We calculated the financial implications of alternative strategies, focusing on Acacia koa ("koa") forestry because of its high conservation and economic potential. Koa's timber value alone creates a viable investment (mean net present value = $453/acre), but its long time horizon and poor initial cash flow pose formidable challenges for landowners. At present, subsidy payments from a government conservation program targeting benefits for biodiversity, water quality, and soil erosion have the greatest potential to move landowners beyond the tipping point in favor of investments in koa forestry, particularly when combined with future timber harvest (mean net present value = $1,661/acre). Creating financial mechanisms to capture diverse ecosystem service values through time will broaden opportunities for conservation land uses. Governments, nongovernmental organizations, and private investors have roles to play in catalyzing this transition by developing new revenue streams that can reach a broad spectrum of landowners.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Proceedings for the National Academy of Sciences
Authors
Josh Goldstein
James B. Friday
Pamela Matson
Pamela Matson
Rosamond L. Naylor
Rosamond L. Naylor
Peter Vitousek
Peter Vitousek
Authors
Ashley M. Dean
Rosamond L. Naylor
Rosamond Naylor
News Type
News
Date
Paragraphs

This past autumn the Freeman Spogli Institute for International Studies (FSI) in conjunction with the Woods Institute for the Environment launched a program on Food Security and the Environment (FSE) to address the deficit in academia and, on a larger scale, the global dialogue surrounding the critical issues of food security, poverty, and environmental degradation.

"Hunger is the silent killer and moral outrage of our time; however, there are few university programs in the United States designed to study and solve the problem of global food insecurity," states program director Rosamond L. Naylor. "FSE's dual affiliation with FSI and the new Stanford Institute for the Environment position it well to make significant steps in this area."

Through a focused research portfolio and an interdisciplinary team of scholars led by Naylor and CESP (Center for Environmental Science and Policy) co-director Walter P. Falcon, FSE aims to design new approaches to solve these persistent and under-prioritized problems, expand higher education on food security and the environment at Stanford, and provide direct policy outreach.

Productive food systems and their environmental consequences are at the core of the program. While many of these systems are global in character, but they are influenced significantly by differing food objectives, income level, and instruments among nations. The program thus seeks to understand the food security issues that are of paramount interest to poor countries, the food diversification challenges that are a focus of middle-income nations, and the food safety and subsidy concerns prominent in richer nations.

Chronic hunger in a time of prosperity

Although the world's supply of basic foods has doubled over the past century, roughly 850 million people (12 percent of the world's population) suffer from chronic hunger. Food insecurity deaths during the past 20 years outnumber war deaths by a factor of at least 5 to 1. Food insecurity is particularly widespread in agricultural regions where resource scarcity and environmental degradation constrain productivity and income growth.

FSE is currently assessing the impacts of climate variability on food security in Asian rice economies. This ongoing project combines the expertise of atmospheric scientists, agricultural economists, and policy analysts to understand and mitigate the adverse effects of El Niño-related climate variability on rice production and food security under current and future global warming conditions. As a consequence of Falcon and Naylor's long-standing roles as policy advisors in Indonesia, models developed through this project have already been embedded into analytical units within Indonesia's Ministry of Agriculture, the Planning Ministry, and the Ministry of Finance.

"With such forecasts in hand, the relevant government agencies are much better equipped to mitigate the negative consequences of El Niño events on incomes and food security in the Indonesian countryside," explain Falcon and Naylor.

Food diversification and intensification

With rapid income growth, urbanization, and population growth in developing economies, priorities shift from food security to the diversification of agricultural production and consumption. "Meat production is projected to double by 2020" states Harold A. Mooney, CESP senior fellow and an author of the Millennium Ecosystem Assessment. "In China alone, meat consumption has more than doubled in the past generation." As a result, land once used to provide grains for humans now provides feed for hogs and poultry.

These trends will have major consequences on the global environment-affecting the quality of the atmosphere, water, and soil due to nutrient overloads; impacting marine fisheries both locally and globally through fish meal use; and threatening human health, as, for example, through excessive use of antibiotics.

An FSE project is looking at these trends as it relates to intensive livestock production and assessing the environmental impacts to gain a better understanding of the true costs of this resource-intensive system. A product of this work recently appeared as a Policy Forum piece in the December 9, 2005, issue of Science titled "Losing the Links Between Livestock and Land".

Numerous factors have contributed to the global growth of livestock systems, lead author Naylor notes, including declining feed-grain prices, relatively inexpensive transportation costs, and trade liberalization. "But many of the true costs remain largely unaccounted for," she says. Those costs include destruction of forests and grasslands to provide farmland for corn, soybeans, and other feed crops destined not directly for humans but for livestock; utilization of large quantities of freshwater; and nitrogen losses from croplands and animal manure.

Naylor and her research team are seeking better ways to track all costs of livestock production, especially the hidden ones related to ecosystem degradation and destruction. "What is needed is a re-coupling of crop and livestock systems," Naylor says. "If not physically, then through pricing and other policy mechanisms that reflect social costs of resource use and ecological abuse."

Such policies "should not significantly compromise the improving diets of developing countries, nor should they prohibit trade," Naylor adds. Instead, they should "focus on regulatory and incentive-based tools to encourage livestock and feed producers to internalize pollution costs, minimize nutrient run-off, and pay the true price of water."

Looking ahead

The future of the program on Food Security and the Environment looks bright, busy, and expansive. While a varied portfolio of projects is in line for the upcoming year, a strong emphasis remains in the area of food security. Building on existing research at Stanford, researchers are identifying avenues for enhancing orphan crop production in the world's least developed countries-crops with little international trade and investment, but with high local value in terms of food and nutrition security. The work seeks to identify advanced genetic and genomic strategies, along with natural resource management strategies, to improve orphan crop yields and stability, enhance crop diversity, and increase rural incomes through orphan crop production.

Another priority area of research centers on the development of biofuels. Biofuels are becoming increasingly a part of the policy set for world food and agriculture. As countries such as the United States seek energy self-reliance and look for alternatives to food and feed subsidies under WTO (World Trade Organization) rules, the conversion of corn, sugar, and soybeans to ethanol and other energy sources becomes more attractive. New extraction methods are making the technology more efficient, and crude oil prices at $60 per barrel are fundamentally changing the economics of biomass energy conversion. A large switch by key export food and feed suppliers, such as the United States and Brazil, to biofuels could fundamentally alter export prices, and hence the world food and feed situation. A team of FSE researchers will assess the true costs of these conversions.

The FSE program recently received a grant through the Presidential Fund for Innovation in International Studies to initiate new interdisciplinary research activities. One such project links ongoing research at Stanford on the environmental and resource costs of industrial livestock production and trade to assess the extent and rate of Brazil's rainforest destruction for soybean production. "Tens of millions of hectares of native grassland and rainforest are currently being cleared for soybean production to supply the global industrial livestock sector," says Naylor. A significant share of Brazil's soybeans is being shipped to China, where rapid income growth is fueling tremendous increases in meat consumption."

A team of remote-sensing experts, ecologists, agronomists, and economists will be looking at the ecological effects on the landscape through biogeochemical changes and biodiversity loss, the impacts of land clearing on the regional hydrologic cycle and climate change, the economic patterns of trade, and the role of policies to achieve an appropriate balance between agricultural commodity trade, production practices, and conservation in Brazil's rainforest states.

"I'm extremely pleased to see the rapid growth of FSE and am encouraged by the recent support provided through the Presidential Fund for Innovation in International Studies," states Naylor. "It enables the program to engage faculty members from economics, political science, biology, civil and environmental engineering, earth sciences, and medicine-as well as graduate students throughout the university-in a set of collaborative research activities that could significantly improve human well-being and the quality of the environment."

All News button
1
News Type
News
Date
Paragraphs
"Feeding the World in the 21st Century: Exploring the Connections Between Food Production, Health, Enviromental Resources and International Security," was one of eight projects to be be awarded.

Eight research projects led by multidisciplinary-faculty teams have jointly received $1.05 million in the first round of awards made by Stanford's new $3 million Presidential Fund for Innovation in International Studies.

Coit D. Blacker, director of the Freeman Spogli Institute for International Studies, said the fund is the first program launched by the university's International Initiative, which seeks to encourage collaborative, cross-disciplinary approaches to address the global challenges of pursuing peace and security, improving governance and advancing human well-being.

The multi-year projects, selected by the International Initiative's executive committee from 37 proposals, will bring together faculty from fields that traditionally do not collaborate to produce new courses, symposia, conferences and research papers. Blacker, who chairs the executive committee, said additional awards totaling about $2 million will be made in 2007 and 2008.

President John Hennessy said he supports the research projects. "The world does not come to us as neat disciplinary problems, but as complex interdisciplinary challenges," he said. "The collaborative proposals we have selected for this first round of funding offer great potential to help shed light on some of the most persistent and pressing political issues on the global agenda today."

Projects in the first round of funding include:

Governance under Authoritarian Rule. Stephen Haber and Beatriz Magaloni, political science; Ian Morris, classics, history; and Jennifer Trimble, classics. The researchers will examine the political economy of authoritarian systems and determine why some authoritarian governments are able to make the transition to democracy, stable growth and functioning institutions, while others prove predatory and unstable.

Addressing Institutional and Interest Conflicts: Project Governance Structures for Global Infrastructure Development. Raymond Levitt, civil and environmental engineering; Doug McAdam and W. Richard Scott, sociology. The project will analyze the challenges of creating efficient and effective public/private institutions for the provision of low-cost, distributed and durable infrastructure services in emerging economies.

Combating HIV/AIDS in Southern Africa: The Treatment Revolution and Its Impact on Health, Well-Being and Governance. David Katzenstein, infectious diseases; and Jeremy Weinstein, political science. Based on the 2005 Group of 8's commitment to put 10 million people infected with HIV/AIDS on treatment within five years, this project will research the impact of this treatment revolution on health, well-being and governance in sub-Saharan Africa.

Evaluating Institutional Responses to Market Liberalization: Why Latin America Was Left Behind. Judith Goldstein, political science; Avner Greif, economics; Steven Haber, political science; Herb Klein, history; H. Grant Miller, Freeman Spogli Institute (FSI)/medicine; and Barry Weingast, political science. The project will research the interaction between inequality and Latin American institutions in explaining the poor economic performance of countries in the region during the past two decades, examining why reforms such as trade liberalization have failed to yield expected results.

Feeding the World in the 21st Century: Exploring the Connections Between Food Production, Health, Environmental Resources and International Security. Rosamond L. Naylor, FSI/economics; Stephen J. Stedman, FSI/political science; Peter Vitousek, biological sciences; and Gary Schoolnik, medicine, microbiology and immunology. The group will launch a new research and teaching program, titled "Food Security and the Environment," with an initial priority on determining linkages between food security, health and international security, and globalization, agricultural trade and the environment.

The Political Economy of Cultural Diversity. James D. Fearon, political science; and Romain Wacziarg, Graduate School of Business. The researchers will assess the impact of ethnic, linguistic and religious diversity on economic growth, trade and capital flows, governance, development of democracy and political stability.

In addition, two grants to plan forthcoming research projects have received $25,000:

Global Health by Design. Geoffrey Gurtner, plastic and reconstructive surgery; David Kelley, mechanical engineering; Thomas Krummel, surgery; Julie Parsonnet, medicine, health research and policy; and Paul Yock, medicine, bioengineering. The group will design a project to examine how new technology can be used to develop effective, affordable and sustainable methods and devices to prevent disease in the world's poorest countries.

Ecological Sanitation in Rural Haiti: An Interdisciplinary Approach to Sanitation and Soil Fertility. Ralph Greco, surgery; and Rodolfo Dirzo, biological sciences. The researchers will develop a plan to test the efficacy of ecological sanitation in decreasing disease and enhancing soil fertility in rural Haiti.

All News button
1
Authors
Donald Kennedy
Donald Kennedy
News Type
Commentary
Date
Paragraphs
Speaking at a June 24 joint conference sponsored by the Brookings Institution and the Pew Center on Global Climate Change, CESP senior fellow Donald Kennedy warned of the pressing need to address global warming now. The conference, titled, "Toward a Sensible Center," brought together senators, CEOs, top federal and state officials, and other prominent leaders to debate the future of U.S. policy on climate change. Speakers included senators Joseph Lieberman and John McCain, U.S. Secretary of Energy Spencer Abraham, World Bank president James Wolfensohn, Larry Schweiger, president of the National Wildlife Federation, and Michael Morris, president and CEO of American Electric Power.

I begin with a proposition. There are a great many pressing problems in the world. There is population growth and economic development, with attending pressures on resources - including food and that other essential, water. There is a continuing global security crisis, augmented by the rise in terrorism. There is the chronically inequitable distribution in resources between the rich nations of the North and the poor nations of the South. And there is the steadily growing body of evidence for a major reorganization of the global climate regime.

My proposition is that the last of these is the most serious threat - not only because it will profoundly affect the lives of our children and our grandchildren in a direct way, but also because it will interact powerfully with every single one of the other problems I have listed.

Let me begin with the science underlying climate change. Last week I helped organize a symposium and briefing session on climate science for press, policy-makers, and the public, supported by the Hewlett Foundation and with co-sponsorship from the Conference Board. We had ten of the most distinguished climate scientists in the United States, led off by Sherry Rowland, the Nobel Laureate in Chemistry. The purpose was to make a careful assessment of the science - what we know for sure, what we think likely, and what are interesting but unproven possibilities.

So here is a short summary of what we know. General Circulation Models - climate models that take into account variations in the sun's energy, volcanic activity, and other natural phenomena - explained fluctuations in average global temperature very well over most of the past thousand years. But for the past hundred years, these same models faithfully reproduce global temperature history ONLY if they include the greenhouse gases - carbon dioxide, methane, and chlorofluorocarbons - that are by-products of human economic activity. That is why the average temperature of the globe has risen by about one degree F, and the sea level has risen by between 10 and 20 cm., in the last century. The primary causative agent is carbon dioxide, which in preindustrial times was about 280 ppm/v and has now reached 380ppm/v. It is rising continually as the activities that produce it are proceeding on a business as usual basis. That is because the failure of the Kyoto protocol - a failure both because its targets were inadequate, and also because they were unattainable by many of the participating nations - has left us without any basis for meeting the goals of the 1992 Framework Convention on Climate Change. Just to remind us, the US is a signatory and a party to that agreement, under which we are committed to limit atmospheric concentrations of greenhouse gases to avoid "dangerous anthropogenic interference with the climate system."

Why, a dozen years later, is there some doubt about the dangers of this interference? The C02 we add to the atmosphere will stay there; its average residence time is a century. There is no disagreement about whether average global temperature will rise; it will. The scientific debate is about how much. For the future we depend again on the General Circulation Models. It's reassuring that when applied to past climates in "back-casting" efforts, like the example I gave a moment ago, these actually predict climate history so accurately. Perhaps more interesting, they regularly somewhat underestimate the magnitude of the real climate changes - that is, Nature regularly turns out to be harsher than the models suggest. Projecting the models into the future, the Intergovernmental Panel on Climate Change, and an evaluation by the National Academies prepared at President Bush's request, estimate that by the end of this century, the increase in average global temperature will be between 1.4 and 5.8 degrees Centigrade.

Why such a range? These models, like most, contain some uncertainties. Some of these are scientific: how increased cloud cover might affect the outcome, since clouds can either cool the climate by reflecting sunlight from above, or warm it by trapping heat that is leaving from below; how changes in the earth's albedo due to melting ice might accelerate heating, and so on. Aerosols produced by volcanic eruptions have a cooling effect, as the eruption of Mt. Pinatubo did in giving us two unusually cool years in the early 90's. Other uncertainties are economic and social: we don't know how national policies and international agreements will serve to restrain the amount of greenhouse gases we are adding.

These uncertainties - about half due to the models themselves, and the rest to social and economic unknowns -- have provided arguments for those who prefer to postpone economically difficult approaches for controlling greenhouse gas emissions. But it is important that even at the very lowest estimates, there will be substantial changes in the nature of human life on the only planet we currently occupy. The rather modest impacts of the past century have already produced profound changes in regional climate dynamics. Substantial ice-sheet melting and retreat is taking place both in the Arctic and in the West Antarctic ice sheet. In the Arctic, where climate warming has been extreme, sea ice is sharply diminished and rivers become ice-free much earlier. Low latitude mountain glaciers are shrinking; the famous snow-capped summit of Kilimanjaro will be bare within fifteen years, converting hundreds of old African safari shots into historic treasures.

Biological cycles are experiencing the effects of warming, with upward extensions of the range of Alpine flora and advances in the time of flowering or breeding by an average of 5 days per decade. The models have all also predicted more frequent and severe weather events, and we have had heat waves in the upper Midwest and Paris, accelerated beach erosion on coasts all over the world, and disastrous floods and landslides in Central America.

That is now, but of course we are more interested in the future. What the models tell us unambiguously is that the climate system is headed for further disruption. The standard scenario foresees a steady, ramp-like increase in average global temperature, with a concomitant rise in sea level, but records of past climate tell us that it is riddled with abrupt changes - something that the models fail to predict well. A possible alternative involves a change in major ocean circulation patterns - especially in the North Atlantic, where a clockwise gyre brings warm equatorial water up via the Gulf Stream. As it flows Northward and then crosses Eastward, it is cooled by the atmosphere, becomes more saline through evaporation, and then sinks to return as a cold deep current. If large discharges of fresh meltwater or rain made this water less dense, it could fail to sink and thus disrupt the entire cycle.

A fictionalized version of such a scenario appears in the disaster film "The Day After Tomorrow," which you should see only for amusement. Beyond that silliness lies a real prospect that a gradual change in average global temperature could intercept the threshold for some non-linear, dynamic process, triggering abrupt changes in either direction. Of course there is uncertainty: we are engaged in a large-scale, uncontrolled experiment on the only planet we have.

Let's consider some collateral impacts. A group of us at Stanford was asked by the Carnegie Commission on Preventing Deadly Conflict to look - among other things -- at ways in which environmental change might alter the circumstances under which human populations might be placed. Climate change was an important variable. One example we looked at was the impact of sea level rise, along with storm surges from extreme weather events, on the Ganges-Brahmaputra delta. Flood disasters already occur there regularly. 15 million people live within 2 meter above sea level, and are vulnerable to abrupt displacement. We know they will have to go somewhere; in the past they have fled in much smaller numbers to Bengal. The security problems arising from a massive influx of a traditionally hostile population, combined with an almost certain high level of cholera infection, are not difficult to imagine.

Water is a desperately important resource in most parts of the world, and drought is often followed by famine or emigration. Here in the US, warmer winters threaten mountain snowpacks and will soon demand the revision of interstate and international water allocation agreements. Maritime rivers are already undertaking management steps to deal with saline intrusions due to sea level rise or storm surges. In Great Britain, the barrier that protects London from occasional flooding of the Thames estuary is now being used six times a year compared to less than once a year in the 1980's.

Agriculture, of course, is the most essential of human activities. The regional distribution of global warming impacts may be at least temporarily kind to temperate-zone food production. But the models all predict an increased incidence of mid-continent droughts as climate change progresses, and we know that the American Midwest has in the past experienced droughts both deeper and longer than the one in the 30's that led to the Dust Bowl migrations. Irrigation is an answer to drought, but in the six High Plains states, dryland wheat production depends upon the Ogallala Aquifer, a buried ice-age storage well that is being so rapidly depleted that it is already unusable in its southern portion. And in the tropics, where people are poorest and capacity to adapt is minimal, the consequences of even modest warming will be far more serious.

Infectious diseases are spread by vectors, like the Anopheles malaria mosquito, that have their own patterns of reproduction, movement, and climate sensitivity. In parts of Africa where vertical topography dominates, warmer and rainier seasons cause malaria incidence to rise in higher-altitude locations. In a warmer and wetter world, more of the same can be expected.

So climate change is not an isolated problem. Instead, it is likely to interact with most of the other problems humans face all over the world. Thus I hope that this meeting will help encourage us to prepare a sound portfolio of risk-reducing measures. These will not, I must tell you, bring us out of the woods. Our destiny is partly built in -- to the heat that is already locked into our oceans, to the greenhouse gases that are already in our atmosphere and will increase by another 50% or more no matter what we do, and to the justified economic appetites of the developing world. What we will be talking about, it should be clear, are ways of limiting the damage to manageable levels, NOT preserving the status quo. We lost that years ago.

So the contemporary policy challenge amounts to a bet about risk: are the consequences of business as usual likely to entail costs greater than those of beginning to mitigate those consequences now? Other nations - the UK, several EU countries, and Japan - are making substantial commitments. Some industries - British Petroleum, Royal Dutch Shell, and Swiss Re, for example - have undertaken steps of their own. The insurance burden from the exploding rates of coastal erosion and storm damage has pushed the insurance industry to lead. If companies fail to participate in emissions reduction and join with others to resist such measures, questions are already being raised. If you believe so strongly that climate change is a myth, Swiss Re might say, then surely you won't mind a climate-related events exclusion from your Directors and Officers insurance policy.

 

But we can't count on voluntary actions, and the United States so far has only announced a long-range research program that, although it looks reasonable, makes NO current commitments to mitigate our contribution, about a quarter of the world's, to the global warming problem. We must have a more aggressive national policy to purchase insurance against this risk.

It will not be cheap. We have old, coal-fired power plants in this country; it may take subsidies to replace them with modern, less carbon-intensive facilities that run on natural gas. States like mine are already driving the transportation sector to ultra-low emission, and that may move the domestic industry in a positive direction. Some of us will have to give up our reflex opposition to nuclear power and begin comparing its risks realistically against those of global climate change. Although the room for alternative energy sources (photovoltaic, wind, geothermal) is limited, these options need encouragement. Energy conservation measures have, at several times in the past, turned economic predictions on their head by their success, and the right incentives could yield real benefits there.

The portfolio I have just described is needed, but will not be enough. We know that market-based mechanisms for emissions control can work, because they did in the 1990 Clean Air Act Amendments that limited SO2 emissions. The bill proposed by Senators McCain and Lieberman would mandate a cap-and-trade program for controlling carbon dioxide emissions. Similar systems are being considered by regional assemblages of states in the Northwest and the Northeast, and that may encourage the development of a national system - which could then build trading relationships with other nations that are moving toward similar regimes. A case for this approach is elegantly made in the Council on Foreign Relations Policy Initiative on Climate Change, by my colleague David Victor.

The United States is in a position of natural leadership here. It is the most powerful nation - and the world's leading producer of greenhouse gases. Plainly it is in its own national interest, in multiple ways, to reduce its consumption of fossil fuels. To see it failing in this most vital, globally sensitive matter is a national embarrassment.

All News button
1
Paragraphs

This article examines the opportunities for using several forms of modern biotechnology to improve orphan crops in developing countries. These crops, including tef, millets, cowpea, and indigenous vegetables, fruits, roots, and tubers, tend to be locally important, but receive little public or private investment. Recent advances in the fields of genetics and genomics provide a more unified understanding of the biology of plants. We summarize some important ways in which genetic technologies can be harnessed for orphan crops and provide examples of potential genetic and genomics research that is likely to benefit poor regions. Finally, we suggest policies that could help create incentives for application of advanced science to orphan crops.

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Food Policy
Authors
Rosamond L. Naylor
Rosamond L. Naylor
Walter P. Falcon
Walter P. Falcon
Robert M. Goodman
Molly M. Jahn
Theresa Sengooba
Hailu Tefera
Rebecca J. Nelson
Paragraphs

This book, based on fieldwork carried out by a team of American and Indonesian economists, investigates Indonesia's potential for maize production. It integrates 3 economic approaches: (1) the commodity systems approach, which traces the technical and market links from input supplier to producer, processor and consumer; (2) the macro-trade approach, which analyses the role of the commodity in generating domestic value-added and foreign exchange; and (3) the food policy approach, which analyses the efficiency of commodity systems and the distribution of their benefits in order to evaluate potential public investments and policy interventions. The conclusion reached is that Indonesia has the potential to expand its maize production by: (1) efficiency in the marketing system and (2) policies encouraging investment in storage and drying facilities.

All Publications button
1
Publication Type
Books
Publication Date
Journal Publisher
Cornell Press in "The Corn Economy of Indonesia", C. Peter Timmer
Authors
Walter P. Falcon
Walter P. Falcon
Paul Dorosh
others
Subscribe to Foreign Policy